航拍影像中休闲步道的统计模型

Andrew Predoehl, S. Morris, Kobus Barnard
{"title":"航拍影像中休闲步道的统计模型","authors":"Andrew Predoehl, S. Morris, Kobus Barnard","doi":"10.1109/CVPR.2013.50","DOIUrl":null,"url":null,"abstract":"We present a statistical model of aerial images of recreational trails, and a method to infer trail routes in such images. We learn a set of text ons describing the images, and use them to divide the image into super-pixels represented by their text on. We then learn, for each text on, the frequency of generating on-trail and off-trail pixels, and the direction of trail through on-trail pixels. From these, we derive an image likelihood function. We combine that with a prior model of trail length and smoothness, yielding a posterior distribution for trails, given an image. We search for good values of this posterior using a novel stochastic variation of Dijkstra's algorithm. Our experiments, on trail images and ground truth collected in the western continental USA, show substantial improvement over those of the previous best trail-finding method.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"45 1","pages":"337-344"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Statistical Model for Recreational Trails in Aerial Images\",\"authors\":\"Andrew Predoehl, S. Morris, Kobus Barnard\",\"doi\":\"10.1109/CVPR.2013.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a statistical model of aerial images of recreational trails, and a method to infer trail routes in such images. We learn a set of text ons describing the images, and use them to divide the image into super-pixels represented by their text on. We then learn, for each text on, the frequency of generating on-trail and off-trail pixels, and the direction of trail through on-trail pixels. From these, we derive an image likelihood function. We combine that with a prior model of trail length and smoothness, yielding a posterior distribution for trails, given an image. We search for good values of this posterior using a novel stochastic variation of Dijkstra's algorithm. Our experiments, on trail images and ground truth collected in the western continental USA, show substantial improvement over those of the previous best trail-finding method.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"45 1\",\"pages\":\"337-344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种休闲步道航拍图像的统计模型,并提出了一种从航拍图像中推断步道路线的方法。我们学习一组描述图像的文本,并使用它们将图像划分为由其文本表示的超像素。然后我们学习,对于每一个文本,生成轨迹上和轨迹外像素的频率,以及轨迹通过轨迹上像素的方向。由此,我们推导出图像似然函数。我们将其与轨迹长度和平滑度的先验模型相结合,得到给定图像的轨迹后验分布。我们使用Dijkstra算法的一种新的随机变化来搜索这个后验的良好值。我们在美国西部大陆采集的路径图像和地面真实情况的实验表明,与以前的最佳路径寻找方法相比,我们的方法有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Statistical Model for Recreational Trails in Aerial Images
We present a statistical model of aerial images of recreational trails, and a method to infer trail routes in such images. We learn a set of text ons describing the images, and use them to divide the image into super-pixels represented by their text on. We then learn, for each text on, the frequency of generating on-trail and off-trail pixels, and the direction of trail through on-trail pixels. From these, we derive an image likelihood function. We combine that with a prior model of trail length and smoothness, yielding a posterior distribution for trails, given an image. We search for good values of this posterior using a novel stochastic variation of Dijkstra's algorithm. Our experiments, on trail images and ground truth collected in the western continental USA, show substantial improvement over those of the previous best trail-finding method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信