{"title":"航拍影像中休闲步道的统计模型","authors":"Andrew Predoehl, S. Morris, Kobus Barnard","doi":"10.1109/CVPR.2013.50","DOIUrl":null,"url":null,"abstract":"We present a statistical model of aerial images of recreational trails, and a method to infer trail routes in such images. We learn a set of text ons describing the images, and use them to divide the image into super-pixels represented by their text on. We then learn, for each text on, the frequency of generating on-trail and off-trail pixels, and the direction of trail through on-trail pixels. From these, we derive an image likelihood function. We combine that with a prior model of trail length and smoothness, yielding a posterior distribution for trails, given an image. We search for good values of this posterior using a novel stochastic variation of Dijkstra's algorithm. Our experiments, on trail images and ground truth collected in the western continental USA, show substantial improvement over those of the previous best trail-finding method.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"45 1","pages":"337-344"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Statistical Model for Recreational Trails in Aerial Images\",\"authors\":\"Andrew Predoehl, S. Morris, Kobus Barnard\",\"doi\":\"10.1109/CVPR.2013.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a statistical model of aerial images of recreational trails, and a method to infer trail routes in such images. We learn a set of text ons describing the images, and use them to divide the image into super-pixels represented by their text on. We then learn, for each text on, the frequency of generating on-trail and off-trail pixels, and the direction of trail through on-trail pixels. From these, we derive an image likelihood function. We combine that with a prior model of trail length and smoothness, yielding a posterior distribution for trails, given an image. We search for good values of this posterior using a novel stochastic variation of Dijkstra's algorithm. Our experiments, on trail images and ground truth collected in the western continental USA, show substantial improvement over those of the previous best trail-finding method.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"45 1\",\"pages\":\"337-344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Statistical Model for Recreational Trails in Aerial Images
We present a statistical model of aerial images of recreational trails, and a method to infer trail routes in such images. We learn a set of text ons describing the images, and use them to divide the image into super-pixels represented by their text on. We then learn, for each text on, the frequency of generating on-trail and off-trail pixels, and the direction of trail through on-trail pixels. From these, we derive an image likelihood function. We combine that with a prior model of trail length and smoothness, yielding a posterior distribution for trails, given an image. We search for good values of this posterior using a novel stochastic variation of Dijkstra's algorithm. Our experiments, on trail images and ground truth collected in the western continental USA, show substantial improvement over those of the previous best trail-finding method.