Lipschitz代数及其二次对偶的一些代数性质和同调性质

IF 0.5 Q3 MATHEMATICS
F. Abtahi, E. Byabani, A. Rejali
{"title":"Lipschitz代数及其二次对偶的一些代数性质和同调性质","authors":"F. Abtahi, E. Byabani, A. Rejali","doi":"10.5817/am2019-4-211","DOIUrl":null,"url":null,"abstract":"Let (X, d) be a metric space and α > 0. We study homological properties and different types of amenability of Lipschitz algebras LipαX and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of X. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"10 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Some algebraic and homological properties of Lipschitz algebras and their second duals\",\"authors\":\"F. Abtahi, E. Byabani, A. Rejali\",\"doi\":\"10.5817/am2019-4-211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (X, d) be a metric space and α > 0. We study homological properties and different types of amenability of Lipschitz algebras LipαX and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of X. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2019-4-211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2019-4-211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设(X, d)是度量空间且α > 0。研究了Lipschitz代数LipαX及其二次对偶的同调性质和不同类型的可迁就性。确切地说,我们首先提供了Lipschitz代数的一些基本性质,这对于度量几何了解度量性质如何反映在Lipschitz函数的简单性质中是很重要的。然后,我们证明了所有这些性质都等价于x的一致离散性或有限性。最后,给出了关于Lipschitz代数的特征空间和Arens正则性的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some algebraic and homological properties of Lipschitz algebras and their second duals
Let (X, d) be a metric space and α > 0. We study homological properties and different types of amenability of Lipschitz algebras LipαX and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of X. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信