硼化奥氏体合金的滑动磨损评价

R. Whittle, V. Scott
{"title":"硼化奥氏体合金的滑动磨损评价","authors":"R. Whittle, V. Scott","doi":"10.1179/030716984803274747","DOIUrl":null,"url":null,"abstract":"AbstractThe reaction zone produced on a series of austenitic alloys by boronizing at 950°C consists of two distinct layers, an outer layer of M B phase and an inner, M2B compound. Beneath the boride layers, appreciable quantities of chromiumrich boride form at grain boundaries, giving an irregular, or ‘toothed’ interface. The dry lvear behaviour of boronized samples exhibits a transition from mild to severe wear, once the load applied to the specimen exceeds a critical value. The transition marks the point where stresses developed by the applied load are sufficient to deform the substrate and thence to promote mechanical instability of the boride coating. Little difference between the wear characteristics of M B and M2B was observed, but a toothed structure appears beneficial, because it increases substrate rigidity and enhances adhesion between boride and metal. Comparison with wear data for untreated austenitic alloys shows that boronizing substantially improves tribological properties, provided that th...","PeriodicalId":18409,"journal":{"name":"Metals technology","volume":"7 1","pages":"522-529"},"PeriodicalIF":0.0000,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Sliding-wear evaluation of boronized austenitic alloys\",\"authors\":\"R. Whittle, V. Scott\",\"doi\":\"10.1179/030716984803274747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe reaction zone produced on a series of austenitic alloys by boronizing at 950°C consists of two distinct layers, an outer layer of M B phase and an inner, M2B compound. Beneath the boride layers, appreciable quantities of chromiumrich boride form at grain boundaries, giving an irregular, or ‘toothed’ interface. The dry lvear behaviour of boronized samples exhibits a transition from mild to severe wear, once the load applied to the specimen exceeds a critical value. The transition marks the point where stresses developed by the applied load are sufficient to deform the substrate and thence to promote mechanical instability of the boride coating. Little difference between the wear characteristics of M B and M2B was observed, but a toothed structure appears beneficial, because it increases substrate rigidity and enhances adhesion between boride and metal. Comparison with wear data for untreated austenitic alloys shows that boronizing substantially improves tribological properties, provided that th...\",\"PeriodicalId\":18409,\"journal\":{\"name\":\"Metals technology\",\"volume\":\"7 1\",\"pages\":\"522-529\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/030716984803274747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/030716984803274747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

【摘要】一系列奥氏体合金在950℃渗硼后产生的反应区分为两层,外层为M B相,内层为M2B相。在硼化物层下面,在晶界处形成了数量可观的富铬硼化物,形成了不规则的或“齿状”界面。一旦施加在试样上的载荷超过临界值,硼化试样的干磨损行为表现出从轻度到严重磨损的转变。过渡标志着所施加载荷产生的应力足以使基材变形,从而促进硼化物涂层的机械不稳定性。mb和M2B的磨损特性差异不大,但齿状结构似乎是有益的,因为它增加了衬底刚度,增强了硼化物与金属之间的附着力。与未经处理的奥氏体合金的磨损数据相比,渗硼处理可以显著提高合金的摩擦学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding-wear evaluation of boronized austenitic alloys
AbstractThe reaction zone produced on a series of austenitic alloys by boronizing at 950°C consists of two distinct layers, an outer layer of M B phase and an inner, M2B compound. Beneath the boride layers, appreciable quantities of chromiumrich boride form at grain boundaries, giving an irregular, or ‘toothed’ interface. The dry lvear behaviour of boronized samples exhibits a transition from mild to severe wear, once the load applied to the specimen exceeds a critical value. The transition marks the point where stresses developed by the applied load are sufficient to deform the substrate and thence to promote mechanical instability of the boride coating. Little difference between the wear characteristics of M B and M2B was observed, but a toothed structure appears beneficial, because it increases substrate rigidity and enhances adhesion between boride and metal. Comparison with wear data for untreated austenitic alloys shows that boronizing substantially improves tribological properties, provided that th...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信