一种求解度量尺寸问题的混合优化算法

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Basma Mohamed, Mohamed Amin
{"title":"一种求解度量尺寸问题的混合优化算法","authors":"Basma Mohamed, Mohamed Amin","doi":"10.5121/jgraphoc.2023.15201","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the NP-hard problem of finding the minimum resolving set of graphs. A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B. The cardinality of the minimal resolving set is the metric dimension of G. The metric dimension appears in various fields such as network discovery and verification, robot navigation, combinatorial optimization and pharmaceutical chemistry, etc. In this study, we introduce a hybrid approach (WCA_WOA) for computing the metric dimension of graphs that combines the water cycle algorithm and a whale optimisation algorithm. The WOA algorithm hybridises the WCA in order to obtain the optimal result and manage the optimization process. The results of the experiments show that the WCA_WOA hybrid algorithm outperforms the WCA, WOA, and particle swarm optimization methods","PeriodicalId":55557,"journal":{"name":"Ad Hoc & Sensor Wireless Networks","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A HYBRID OPTIMIZATION ALGORITHMS FOR SOLVING METRIC DIMENSION PROBLEM\",\"authors\":\"Basma Mohamed, Mohamed Amin\",\"doi\":\"10.5121/jgraphoc.2023.15201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the NP-hard problem of finding the minimum resolving set of graphs. A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B. The cardinality of the minimal resolving set is the metric dimension of G. The metric dimension appears in various fields such as network discovery and verification, robot navigation, combinatorial optimization and pharmaceutical chemistry, etc. In this study, we introduce a hybrid approach (WCA_WOA) for computing the metric dimension of graphs that combines the water cycle algorithm and a whale optimisation algorithm. The WOA algorithm hybridises the WCA in order to obtain the optimal result and manage the optimization process. The results of the experiments show that the WCA_WOA hybrid algorithm outperforms the WCA, WOA, and particle swarm optimization methods\",\"PeriodicalId\":55557,\"journal\":{\"name\":\"Ad Hoc & Sensor Wireless Networks\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc & Sensor Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5121/jgraphoc.2023.15201\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc & Sensor Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5121/jgraphoc.2023.15201","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑寻找图的最小解析集的np困难问题。如果连通图G的每个顶点与B中的顶点的距离向量唯一地标识,则连通图G的顶点集B可以解析G。最小解析集的基数就是G的度量维数。度量维数出现在网络发现与验证、机器人导航、组合优化和药物化学等各个领域。在本研究中,我们引入了一种混合方法(WCA_WOA)来计算图的度量维度,该方法结合了水循环算法和鲸鱼优化算法。WOA算法通过混合WCA来获得最优结果,并对优化过程进行管理。实验结果表明,WCA_WOA混合算法优于WCA、WOA和粒子群优化方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A HYBRID OPTIMIZATION ALGORITHMS FOR SOLVING METRIC DIMENSION PROBLEM
In this paper, we consider the NP-hard problem of finding the minimum resolving set of graphs. A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B. The cardinality of the minimal resolving set is the metric dimension of G. The metric dimension appears in various fields such as network discovery and verification, robot navigation, combinatorial optimization and pharmaceutical chemistry, etc. In this study, we introduce a hybrid approach (WCA_WOA) for computing the metric dimension of graphs that combines the water cycle algorithm and a whale optimisation algorithm. The WOA algorithm hybridises the WCA in order to obtain the optimal result and manage the optimization process. The results of the experiments show that the WCA_WOA hybrid algorithm outperforms the WCA, WOA, and particle swarm optimization methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc & Sensor Wireless Networks
Ad Hoc & Sensor Wireless Networks 工程技术-电信学
CiteScore
2.00
自引率
44.40%
发文量
0
审稿时长
8 months
期刊介绍: Ad Hoc & Sensor Wireless Networks seeks to provide an opportunity for researchers from computer science, engineering and mathematical backgrounds to disseminate and exchange knowledge in the rapidly emerging field of ad hoc and sensor wireless networks. It will comprehensively cover physical, data-link, network and transport layers, as well as application, security, simulation and power management issues in sensor, local area, satellite, vehicular, personal, and mobile ad hoc networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信