使用 PandaOmics 人工智能驱动的发现引擎预测基于衰老的两用疾病和年龄相关靶点的特征。

IF 0.2 4区 心理学 Q4 PSYCHOLOGY, PSYCHOANALYSIS
Frank W Pun, Geoffrey Ho Duen Leung, Hoi Wing Leung, Bonnie Hei Man Liu, Xi Long, Ivan V Ozerov, Ju Wang, Feng Ren, Alexander Aliper, Evgeny Izumchenko, Alexey Moskalev, João Pedro de Magalhães, Alex Zhavoronkov
{"title":"使用 PandaOmics 人工智能驱动的发现引擎预测基于衰老的两用疾病和年龄相关靶点的特征。","authors":"Frank W Pun, Geoffrey Ho Duen Leung, Hoi Wing Leung, Bonnie Hei Man Liu, Xi Long, Ivan V Ozerov, Ju Wang, Feng Ren, Alexander Aliper, Evgeny Izumchenko, Alexey Moskalev, João Pedro de Magalhães, Alex Zhavoronkov","doi":"10.18632/aging.203960","DOIUrl":null,"url":null,"abstract":"<p><p>Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.</p>","PeriodicalId":45575,"journal":{"name":"Psyche-Zeitschrift Fur Psychoanalyse Und Ihre Anwendungen","volume":"75 1","pages":"2475-2506"},"PeriodicalIF":0.2000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004567/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine.\",\"authors\":\"Frank W Pun, Geoffrey Ho Duen Leung, Hoi Wing Leung, Bonnie Hei Man Liu, Xi Long, Ivan V Ozerov, Ju Wang, Feng Ren, Alexander Aliper, Evgeny Izumchenko, Alexey Moskalev, João Pedro de Magalhães, Alex Zhavoronkov\",\"doi\":\"10.18632/aging.203960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.</p>\",\"PeriodicalId\":45575,\"journal\":{\"name\":\"Psyche-Zeitschrift Fur Psychoanalyse Und Ihre Anwendungen\",\"volume\":\"75 1\",\"pages\":\"2475-2506\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004567/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psyche-Zeitschrift Fur Psychoanalyse Und Ihre Anwendungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/aging.203960\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, PSYCHOANALYSIS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psyche-Zeitschrift Fur Psychoanalyse Und Ihre Anwendungen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/aging.203960","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, PSYCHOANALYSIS","Score":null,"Total":0}
引用次数: 0

摘要

衰老生物学是一个前景广阔、方兴未艾的研究领域,它可以产生双重用途的通路和蛋白质靶标,可能会影响多种疾病,同时延缓甚至可能逆转与衰老相关的过程。衰老标志是对驱动衰老过程的多种机制进行分类的一种广泛使用的方法。除了经典的九大衰老标志外,细胞外基质僵化、慢性炎症和逆转录酶激活等过程也经常被考虑在内,因为它们与衰老密切相关。在本研究中,我们使用了人工智能 PandaOmics 平台提供的多种靶点识别和优先排序技术,提出了一份有希望用于药物发现的新型衰老相关靶点清单。我们还提出了一份更经典的靶点列表,这些靶点可用于每个衰老标志中的药物再利用。这项综合分析产生的大多数顶级靶点都在炎症和细胞外基质硬度中发挥作用,突出了这些过程作为衰老和老年相关疾病治疗靶点的相关性。总之,我们的研究揭示了与多种衰老特征相关的高可信度和新靶点,并展示了 PandaOmics 平台在多种疾病领域靶点发现中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine.

Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
62
期刊介绍: Namhafte Vertreter des Faches stellen die Methode der psychoanalytischen Beobachtung von Säuglingen, Kleinkindern und Organisationen nach Esther Bick dar. Das psychoanalytische Verstehen von Beziehungen wird anhand von Beobachtungsmaterial erläutert. Reflexionen zur klinischen Anwendung runden diesen Band ab.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信