适当的排列,舒伯特几何和随机性

IF 0.4 Q4 MATHEMATICS, APPLIED
D. Brewster, Reuven Hodges, A. Yong
{"title":"适当的排列,舒伯特几何和随机性","authors":"D. Brewster, Reuven Hodges, A. Yong","doi":"10.4310/joc.2022.v13.n4.a6","DOIUrl":null,"url":null,"abstract":"We define and study proper permutations. Properness is a geometrically natural necessary criterion for a Schubert variety to be Levi-spherical. We prove the probability that a random permutation is proper goes to zero in the limit.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Proper permutations, Schubert geometry, and randomness\",\"authors\":\"D. Brewster, Reuven Hodges, A. Yong\",\"doi\":\"10.4310/joc.2022.v13.n4.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define and study proper permutations. Properness is a geometrically natural necessary criterion for a Schubert variety to be Levi-spherical. We prove the probability that a random permutation is proper goes to zero in the limit.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2022.v13.n4.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n4.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

我们定义和研究适当的排列。性质是舒伯特变异体为列维球的一个几何上自然的必要判据。我们证明了一个随机排列是固有的概率在极限下趋于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proper permutations, Schubert geometry, and randomness
We define and study proper permutations. Properness is a geometrically natural necessary criterion for a Schubert variety to be Levi-spherical. We prove the probability that a random permutation is proper goes to zero in the limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信