{"title":"适当的排列,舒伯特几何和随机性","authors":"D. Brewster, Reuven Hodges, A. Yong","doi":"10.4310/joc.2022.v13.n4.a6","DOIUrl":null,"url":null,"abstract":"We define and study proper permutations. Properness is a geometrically natural necessary criterion for a Schubert variety to be Levi-spherical. We prove the probability that a random permutation is proper goes to zero in the limit.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Proper permutations, Schubert geometry, and randomness\",\"authors\":\"D. Brewster, Reuven Hodges, A. Yong\",\"doi\":\"10.4310/joc.2022.v13.n4.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define and study proper permutations. Properness is a geometrically natural necessary criterion for a Schubert variety to be Levi-spherical. We prove the probability that a random permutation is proper goes to zero in the limit.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2022.v13.n4.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n4.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Proper permutations, Schubert geometry, and randomness
We define and study proper permutations. Properness is a geometrically natural necessary criterion for a Schubert variety to be Levi-spherical. We prove the probability that a random permutation is proper goes to zero in the limit.