脊椎动物血-气屏障的膜介导发育。

Q Medicine
A. Makanya
{"title":"脊椎动物血-气屏障的膜介导发育。","authors":"A. Makanya","doi":"10.1002/bdrc.21120","DOIUrl":null,"url":null,"abstract":"During embryonic lung development, establishment of the gas-exchanging units is guided by epithelial tubes lined by columnar cells. Ultimately, a thin blood-gas barrier (BGB) is established and forms the interface for efficient gas exchange. This thin BGB is achieved through processes, which entail lowering of tight junctions, stretching, and thinning in mammals. In birds the processes are termed peremerecytosis, if they involve cell squeezing and constriction, or secarecytosis, if they entail cutting cells to size. In peremerecytosis, cells constrict at a point below the protruding apical part, resulting in fusion of the opposing membranes and discharge of the aposome, or the cell may be squeezed by the more endowed cognate neighbors. Secarecytosis may entail formation of double membranes below the aposome, subsequent unzipping and discharge of the aposome, or vesicles form below the aposome, fuse in a bilateral manner, and release the aposome. These processes occur within limited developmental windows, and are mediated through cell membranes that appear to be of intracellular in origin. In addition, basement membranes (BM) play pivotal roles in differentiation of the epithelial and endothelial layers of the BGB. Laminins found in the BM are particularly important in the signaling pathways that result in formation of squamous pneumocytes and pulmonary capillaries, the two major components of the BGB. Some information exists on the contribution by BM to BGB formation, but little is known regarding the molecules that drive peremerecytosis, or even the origins and composition of the double and vesicular membranes involved in secarecytosis.","PeriodicalId":55352,"journal":{"name":"Birth Defects Research Part C-Embryo Today-Reviews","volume":"15 1","pages":"85-97"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Membrane mediated development of the vertebrate blood-gas-barrier.\",\"authors\":\"A. Makanya\",\"doi\":\"10.1002/bdrc.21120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During embryonic lung development, establishment of the gas-exchanging units is guided by epithelial tubes lined by columnar cells. Ultimately, a thin blood-gas barrier (BGB) is established and forms the interface for efficient gas exchange. This thin BGB is achieved through processes, which entail lowering of tight junctions, stretching, and thinning in mammals. In birds the processes are termed peremerecytosis, if they involve cell squeezing and constriction, or secarecytosis, if they entail cutting cells to size. In peremerecytosis, cells constrict at a point below the protruding apical part, resulting in fusion of the opposing membranes and discharge of the aposome, or the cell may be squeezed by the more endowed cognate neighbors. Secarecytosis may entail formation of double membranes below the aposome, subsequent unzipping and discharge of the aposome, or vesicles form below the aposome, fuse in a bilateral manner, and release the aposome. These processes occur within limited developmental windows, and are mediated through cell membranes that appear to be of intracellular in origin. In addition, basement membranes (BM) play pivotal roles in differentiation of the epithelial and endothelial layers of the BGB. Laminins found in the BM are particularly important in the signaling pathways that result in formation of squamous pneumocytes and pulmonary capillaries, the two major components of the BGB. Some information exists on the contribution by BM to BGB formation, but little is known regarding the molecules that drive peremerecytosis, or even the origins and composition of the double and vesicular membranes involved in secarecytosis.\",\"PeriodicalId\":55352,\"journal\":{\"name\":\"Birth Defects Research Part C-Embryo Today-Reviews\",\"volume\":\"15 1\",\"pages\":\"85-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Birth Defects Research Part C-Embryo Today-Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/bdrc.21120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth Defects Research Part C-Embryo Today-Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/bdrc.21120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

在胚胎肺发育过程中,气体交换单元的建立是由柱状细胞排列的上皮管引导的。最终,一个薄的血气屏障(BGB)被建立并形成有效气体交换的界面。在哺乳动物中,这种薄的BGB是通过降低紧密连接、拉伸和变薄的过程实现的。在鸟类中,如果这一过程涉及到细胞挤压和收缩,就被称为细胞渗透作用;如果这一过程涉及到细胞切割,就被称为细胞再生作用。在过渗性细胞增生中,细胞在突出的根尖部分以下的一点收缩,导致对立膜的融合和载脂蛋白的排出,或者细胞可能被更多的同源邻近细胞挤压。孢子再循环作用可能导致载虫体下方形成双膜,随后载虫体解开并排出,或载虫体下方形成囊泡,以双侧方式融合并释放载虫体。这些过程发生在有限的发育窗口内,并通过细胞内起源的细胞膜介导。此外,基底膜(BM)在BGB上皮和内皮层的分化中起关键作用。在基底膜中发现的层粘连蛋白在导致鳞状肺细胞和肺毛细血管形成的信号通路中尤为重要,这是基底膜的两个主要组成部分。目前已有一些关于BM对BGB形成的贡献的信息,但对于驱动过渗细胞作用的分子,甚至是与水循环作用有关的双膜和囊泡膜的起源和组成知之甚少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Membrane mediated development of the vertebrate blood-gas-barrier.
During embryonic lung development, establishment of the gas-exchanging units is guided by epithelial tubes lined by columnar cells. Ultimately, a thin blood-gas barrier (BGB) is established and forms the interface for efficient gas exchange. This thin BGB is achieved through processes, which entail lowering of tight junctions, stretching, and thinning in mammals. In birds the processes are termed peremerecytosis, if they involve cell squeezing and constriction, or secarecytosis, if they entail cutting cells to size. In peremerecytosis, cells constrict at a point below the protruding apical part, resulting in fusion of the opposing membranes and discharge of the aposome, or the cell may be squeezed by the more endowed cognate neighbors. Secarecytosis may entail formation of double membranes below the aposome, subsequent unzipping and discharge of the aposome, or vesicles form below the aposome, fuse in a bilateral manner, and release the aposome. These processes occur within limited developmental windows, and are mediated through cell membranes that appear to be of intracellular in origin. In addition, basement membranes (BM) play pivotal roles in differentiation of the epithelial and endothelial layers of the BGB. Laminins found in the BM are particularly important in the signaling pathways that result in formation of squamous pneumocytes and pulmonary capillaries, the two major components of the BGB. Some information exists on the contribution by BM to BGB formation, but little is known regarding the molecules that drive peremerecytosis, or even the origins and composition of the double and vesicular membranes involved in secarecytosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.65
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: John Wiley & Sons and the Teratology Society are please to announce a new journal, Birth Defects Research . This new journal is a comprehensive resource of original research and reviews in fields related to embryo-fetal development and reproduction. Birth Defects Research draws from the expertise and reputation of two current Wiley journals, and introduces a new forum for reviews in developmental biology and embryology. Part C: Embryo Today: Reviews
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信