算法1006

Rémy Abergel, L. Moisan
{"title":"算法1006","authors":"Rémy Abergel, L. Moisan","doi":"10.1145/3365983","DOIUrl":null,"url":null,"abstract":"We present a computational procedure to evaluate the integral ∫yx sp-1 e-μs ds for 0 ≤ x < y ≤ +∞,μ = ±1, p> 0, which generalizes the lower (x=0) and upper (y=+∞) incomplete gamma functions. To allow for large values of x, y, and p while avoiding under/overflow issues in the standard double precision floating point arithmetic, we use an explicit normalization that is much more efficient than the classical ratio with the complete gamma function. The generalized incomplete gamma function is estimated with continued fractions, with integrations by parts, or, when x ≈ y, with the Romberg numerical integration algorithm. We show that the accuracy reached by our algorithm improves a recent state-of-the-art method by two orders of magnitude, and it is essentially optimal considering the limitations imposed by floating point arithmetic. Moreover, the admissible parameter range of our algorithm (0 ≤ p,x,y ≤ 1015) is much larger than competing algorithms, and its robustness is assessed through massive usage in an image processing application.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"18 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Algorithm 1006\",\"authors\":\"Rémy Abergel, L. Moisan\",\"doi\":\"10.1145/3365983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a computational procedure to evaluate the integral ∫yx sp-1 e-μs ds for 0 ≤ x < y ≤ +∞,μ = ±1, p> 0, which generalizes the lower (x=0) and upper (y=+∞) incomplete gamma functions. To allow for large values of x, y, and p while avoiding under/overflow issues in the standard double precision floating point arithmetic, we use an explicit normalization that is much more efficient than the classical ratio with the complete gamma function. The generalized incomplete gamma function is estimated with continued fractions, with integrations by parts, or, when x ≈ y, with the Romberg numerical integration algorithm. We show that the accuracy reached by our algorithm improves a recent state-of-the-art method by two orders of magnitude, and it is essentially optimal considering the limitations imposed by floating point arithmetic. Moreover, the admissible parameter range of our algorithm (0 ≤ p,x,y ≤ 1015) is much larger than competing algorithms, and its robustness is assessed through massive usage in an image processing application.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"18 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3365983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给出了积分∫yx sp-1 e-μs ds在0≤x < y≤+∞,μ =±1,p> 0时的计算方法,推广了下(x=0)和上(y=+∞)不完全函数。为了允许x, y和p的大值,同时避免标准双精度浮点运算中的不足/溢出问题,我们使用显式规范化,它比具有完整gamma函数的经典比率更有效。广义不完全函数用连分式估计,用分部积分估计,或者当x≈y时,用Romberg数值积分算法估计。我们表明,我们的算法所达到的精度将最近最先进的方法提高了两个数量级,并且考虑到浮点算法所施加的限制,它本质上是最优的。此外,我们的算法的允许参数范围(0≤p,x,y≤1015)比竞争算法大得多,并且通过在图像处理应用中的大量使用来评估其鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm 1006
We present a computational procedure to evaluate the integral ∫yx sp-1 e-μs ds for 0 ≤ x < y ≤ +∞,μ = ±1, p> 0, which generalizes the lower (x=0) and upper (y=+∞) incomplete gamma functions. To allow for large values of x, y, and p while avoiding under/overflow issues in the standard double precision floating point arithmetic, we use an explicit normalization that is much more efficient than the classical ratio with the complete gamma function. The generalized incomplete gamma function is estimated with continued fractions, with integrations by parts, or, when x ≈ y, with the Romberg numerical integration algorithm. We show that the accuracy reached by our algorithm improves a recent state-of-the-art method by two orders of magnitude, and it is essentially optimal considering the limitations imposed by floating point arithmetic. Moreover, the admissible parameter range of our algorithm (0 ≤ p,x,y ≤ 1015) is much larger than competing algorithms, and its robustness is assessed through massive usage in an image processing application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信