反扩散方程的离散分析

M. Breuß
{"title":"反扩散方程的离散分析","authors":"M. Breuß","doi":"10.1163/157404006778330861","DOIUrl":null,"url":null,"abstract":"We discuss some important issues arising when approximating numerically stabilised inverse diffusion processes. We prove rigorously the necessity of a minmod-type stabilisation. Furthermore, we give rigorously verified assertions concerning the occurence of undesirable staircasing aka terracing artefacts. The theoretical results are supplemented by numerical tests.","PeriodicalId":101169,"journal":{"name":"Soft Computing Letters","volume":"80 1","pages":"117-129"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An analysis of discretisations of inverse diffusion equations\",\"authors\":\"M. Breuß\",\"doi\":\"10.1163/157404006778330861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss some important issues arising when approximating numerically stabilised inverse diffusion processes. We prove rigorously the necessity of a minmod-type stabilisation. Furthermore, we give rigorously verified assertions concerning the occurence of undesirable staircasing aka terracing artefacts. The theoretical results are supplemented by numerical tests.\",\"PeriodicalId\":101169,\"journal\":{\"name\":\"Soft Computing Letters\",\"volume\":\"80 1\",\"pages\":\"117-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/157404006778330861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/157404006778330861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们讨论了当近似数值稳定的逆扩散过程时出现的一些重要问题。我们严格地证明了最小模型稳定的必要性。此外,我们给出了严格验证的断言关于不受欢迎的楼梯或梯田文物的发生。数值试验补充了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of discretisations of inverse diffusion equations
We discuss some important issues arising when approximating numerically stabilised inverse diffusion processes. We prove rigorously the necessity of a minmod-type stabilisation. Furthermore, we give rigorously verified assertions concerning the occurence of undesirable staircasing aka terracing artefacts. The theoretical results are supplemented by numerical tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信