声学音乐信号基音估计的几何框架

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Tom Goodman, Karoline van Gemst, P. Tiňo
{"title":"声学音乐信号基音估计的几何框架","authors":"Tom Goodman, Karoline van Gemst, P. Tiňo","doi":"10.1080/17459737.2021.1979116","DOIUrl":null,"url":null,"abstract":"This paper presents a geometric approach to pitch estimation (PE) – an important problem in music information retrieval (MIR), and a precursor to a variety of other problems in the field. Though there exist a number of highly accurate methods, both mono-pitch estimation and multi-pitch estimation (particularly with unspecified polyphonic timbre) prove computationally and conceptually challenging. A number of current techniques, while incredibly effective, are not targeted towards eliciting the underlying mathematical structures that underpin the complex musical patterns exhibited by acoustic musical signals. Tackling the approach from both theoretical and experimental perspectives, we present a novel framework, a basis for further work in the area, and results that (while not state of the art) demonstrate relative efficacy. The framework presented in this paper opens up a completely new way to tackle PE problems and may have uses both in traditional analytical approaches as well as in the emerging machine learning (ML) methods that currently dominate the literature.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometric framework for pitch estimation on acoustic musical signals\",\"authors\":\"Tom Goodman, Karoline van Gemst, P. Tiňo\",\"doi\":\"10.1080/17459737.2021.1979116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a geometric approach to pitch estimation (PE) – an important problem in music information retrieval (MIR), and a precursor to a variety of other problems in the field. Though there exist a number of highly accurate methods, both mono-pitch estimation and multi-pitch estimation (particularly with unspecified polyphonic timbre) prove computationally and conceptually challenging. A number of current techniques, while incredibly effective, are not targeted towards eliciting the underlying mathematical structures that underpin the complex musical patterns exhibited by acoustic musical signals. Tackling the approach from both theoretical and experimental perspectives, we present a novel framework, a basis for further work in the area, and results that (while not state of the art) demonstrate relative efficacy. The framework presented in this paper opens up a completely new way to tackle PE problems and may have uses both in traditional analytical approaches as well as in the emerging machine learning (ML) methods that currently dominate the literature.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2021.1979116\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2021.1979116","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种几何方法来进行音高估计(PE),这是音乐信息检索(MIR)中的一个重要问题,也是该领域许多其他问题的先驱。尽管存在许多高度精确的方法,但单音高估计和多音高估计(特别是未指定的复音音色)在计算和概念上都具有挑战性。目前的许多技术,虽然非常有效,但并不是针对激发声学音乐信号所显示的复杂音乐模式的基础数学结构。从理论和实验的角度来解决这个问题,我们提出了一个新的框架,为该领域的进一步工作奠定了基础,并得出了(虽然不是最先进的)相对有效的结果。本文提出的框架为解决PE问题开辟了一种全新的方法,可以用于传统的分析方法,也可以用于目前主导文献的新兴机器学习(ML)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometric framework for pitch estimation on acoustic musical signals
This paper presents a geometric approach to pitch estimation (PE) – an important problem in music information retrieval (MIR), and a precursor to a variety of other problems in the field. Though there exist a number of highly accurate methods, both mono-pitch estimation and multi-pitch estimation (particularly with unspecified polyphonic timbre) prove computationally and conceptually challenging. A number of current techniques, while incredibly effective, are not targeted towards eliciting the underlying mathematical structures that underpin the complex musical patterns exhibited by acoustic musical signals. Tackling the approach from both theoretical and experimental perspectives, we present a novel framework, a basis for further work in the area, and results that (while not state of the art) demonstrate relative efficacy. The framework presented in this paper opens up a completely new way to tackle PE problems and may have uses both in traditional analytical approaches as well as in the emerging machine learning (ML) methods that currently dominate the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信