噪声随机几何图的团数

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Matthew Kahle, Minghao Tian, Yusu Wang
{"title":"噪声随机几何图的团数","authors":"Matthew Kahle, Minghao Tian, Yusu Wang","doi":"10.1002/rsa.21134","DOIUrl":null,"url":null,"abstract":"Let Gn$$ {G}_n $$ be a random geometric graph, and then for q,p∈[0,1)$$ q,p\\in \\left[0,1\\right) $$ we construct a (q,p)$$ \\left(q,p\\right) $$ ‐perturbed noisy random geometric graph Gnq,p$$ {G}_n^{q,p} $$ where each existing edge in Gn$$ {G}_n $$ is removed with probability q$$ q $$ , while and each non‐existent edge in Gn$$ {G}_n $$ is inserted with probability p$$ p $$ . We give asymptotically tight bounds on the clique number ωGnq,p$$ \\omega \\left({G}_n^{q,p}\\right) $$ for several regimes of parameter.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"61 1 1","pages":"242 - 279"},"PeriodicalIF":0.9000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the clique number of noisy random geometric graphs\",\"authors\":\"Matthew Kahle, Minghao Tian, Yusu Wang\",\"doi\":\"10.1002/rsa.21134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Gn$$ {G}_n $$ be a random geometric graph, and then for q,p∈[0,1)$$ q,p\\\\in \\\\left[0,1\\\\right) $$ we construct a (q,p)$$ \\\\left(q,p\\\\right) $$ ‐perturbed noisy random geometric graph Gnq,p$$ {G}_n^{q,p} $$ where each existing edge in Gn$$ {G}_n $$ is removed with probability q$$ q $$ , while and each non‐existent edge in Gn$$ {G}_n $$ is inserted with probability p$$ p $$ . We give asymptotically tight bounds on the clique number ωGnq,p$$ \\\\omega \\\\left({G}_n^{q,p}\\\\right) $$ for several regimes of parameter.\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":\"61 1 1\",\"pages\":\"242 - 279\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21134\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21134","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

摘要

设Gn $$ {G}_n $$为随机几何图,然后对于q,p∈[0,1)$$ q,p\in \left[0,1\right) $$,我们构造一个(q,p) $$ \left(q,p\right) $$‐摄动噪声随机几何图Gnq,p $$ {G}_n^{q,p} $$,其中Gn $$ {G}_n $$中每条存在的边以概率q $$ q $$被移除,而Gn $$ {G}_n $$中每条不存在的边以概率p $$ p $$被插入。我们给出了若干参数区团数ωGnq,p $$ \omega \left({G}_n^{q,p}\right) $$的渐近紧界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the clique number of noisy random geometric graphs
Let Gn$$ {G}_n $$ be a random geometric graph, and then for q,p∈[0,1)$$ q,p\in \left[0,1\right) $$ we construct a (q,p)$$ \left(q,p\right) $$ ‐perturbed noisy random geometric graph Gnq,p$$ {G}_n^{q,p} $$ where each existing edge in Gn$$ {G}_n $$ is removed with probability q$$ q $$ , while and each non‐existent edge in Gn$$ {G}_n $$ is inserted with probability p$$ p $$ . We give asymptotically tight bounds on the clique number ωGnq,p$$ \omega \left({G}_n^{q,p}\right) $$ for several regimes of parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信