{"title":"不可压缩Navier-Stokes方程的原始局部多网格细化方法数值求解","authors":"Stéphane Vincent, Jean-Paul Caltagirone","doi":"10.1016/S1287-4620(00)88419-7","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulation of complex flows involving unsteady structures, boundary layers or free surfaces on a unique grid is very greedy in time and CPU because a great number of calculation point is needed to ensure a satisfactory description of the different scales of the problem. An original local multigrid method, able to refine the grid at the cell scale, is proposed to solve the Navier-Stokes and energy equations. The results obtained for the natural convection in a square cavity are compared to the one of the literature for Rayleigh numbers in the range 10<sup>5</sup>–10<sup>8</sup>.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 1","pages":"Pages 73-80"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88419-7","citationCount":"7","resultStr":"{\"title\":\"Numerical solving of incompressible Navier-Stokes equations using an original local multigrid refinement method\",\"authors\":\"Stéphane Vincent, Jean-Paul Caltagirone\",\"doi\":\"10.1016/S1287-4620(00)88419-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerical simulation of complex flows involving unsteady structures, boundary layers or free surfaces on a unique grid is very greedy in time and CPU because a great number of calculation point is needed to ensure a satisfactory description of the different scales of the problem. An original local multigrid method, able to refine the grid at the cell scale, is proposed to solve the Navier-Stokes and energy equations. The results obtained for the natural convection in a square cavity are compared to the one of the literature for Rayleigh numbers in the range 10<sup>5</sup>–10<sup>8</sup>.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"328 1\",\"pages\":\"Pages 73-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88419-7\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000884197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000884197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical solving of incompressible Navier-Stokes equations using an original local multigrid refinement method
Numerical simulation of complex flows involving unsteady structures, boundary layers or free surfaces on a unique grid is very greedy in time and CPU because a great number of calculation point is needed to ensure a satisfactory description of the different scales of the problem. An original local multigrid method, able to refine the grid at the cell scale, is proposed to solve the Navier-Stokes and energy equations. The results obtained for the natural convection in a square cavity are compared to the one of the literature for Rayleigh numbers in the range 105–108.