{"title":"一种具有电磁感应感应的谐振式MEMS磁场传感器","authors":"Dehui Xu, Guoqiang Wu, B. Xiong, Yuelin Wang","doi":"10.1109/NEMS.2014.6908778","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel magnetic field sensor, which exploits capacitive driving and electromagnetic induction sensing to detect the external magnetic field. The capacitive driving reduces the power dissipation and the electromagnetic induction sensing makes the output signal with high linearity. The measurement results verify that the sensitivity can be increased by increasing the sensing coil number. However, the sensitivity was found not in linear direct proportion to the sensing coil number. The measured sensitivity (S) for the sensor with double layer coil and that with single layer coil are 3.5 μV/mT and 2.1 μV/mT, respectively.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"65 1","pages":"143-146"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A resonant MEMS magnetic field sensor with electromagnetic induction sensing\",\"authors\":\"Dehui Xu, Guoqiang Wu, B. Xiong, Yuelin Wang\",\"doi\":\"10.1109/NEMS.2014.6908778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel magnetic field sensor, which exploits capacitive driving and electromagnetic induction sensing to detect the external magnetic field. The capacitive driving reduces the power dissipation and the electromagnetic induction sensing makes the output signal with high linearity. The measurement results verify that the sensitivity can be increased by increasing the sensing coil number. However, the sensitivity was found not in linear direct proportion to the sensing coil number. The measured sensitivity (S) for the sensor with double layer coil and that with single layer coil are 3.5 μV/mT and 2.1 μV/mT, respectively.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"65 1\",\"pages\":\"143-146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A resonant MEMS magnetic field sensor with electromagnetic induction sensing
In this paper, we propose a novel magnetic field sensor, which exploits capacitive driving and electromagnetic induction sensing to detect the external magnetic field. The capacitive driving reduces the power dissipation and the electromagnetic induction sensing makes the output signal with high linearity. The measurement results verify that the sensitivity can be increased by increasing the sensing coil number. However, the sensitivity was found not in linear direct proportion to the sensing coil number. The measured sensitivity (S) for the sensor with double layer coil and that with single layer coil are 3.5 μV/mT and 2.1 μV/mT, respectively.