微藻分类的深度学习

Iago Correa, Paulo L. J. Drews-Jr, S. Botelho, M. S. Souza, V. Tavano
{"title":"微藻分类的深度学习","authors":"Iago Correa, Paulo L. J. Drews-Jr, S. Botelho, M. S. Souza, V. Tavano","doi":"10.1109/ICMLA.2017.0-183","DOIUrl":null,"url":null,"abstract":"Microalgae are unicellular organisms that presents limited physical characteristics such as size, shape or even the present structures. Classifying them manually may require great effort from experts since thousands of microalgae can be found in a small sample of water. Furthermore, the manual classification is a non-trivial operation. We proposed a deep learning technique to solve the problem. We also created a classified dataset that allow us to adopt this technique. To the best of our knowledge, the present work is the first one to apply this kind of technique on the microalgae classification task. The obtained results show the capabilities of the method to properly classify the data by using as input the low resolution images acquired by a particle analyzer instead of pre-processed features. We also show the improvement provided by the use of data augmentation technique.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"2 1","pages":"20-25"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Deep Learning for Microalgae Classification\",\"authors\":\"Iago Correa, Paulo L. J. Drews-Jr, S. Botelho, M. S. Souza, V. Tavano\",\"doi\":\"10.1109/ICMLA.2017.0-183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microalgae are unicellular organisms that presents limited physical characteristics such as size, shape or even the present structures. Classifying them manually may require great effort from experts since thousands of microalgae can be found in a small sample of water. Furthermore, the manual classification is a non-trivial operation. We proposed a deep learning technique to solve the problem. We also created a classified dataset that allow us to adopt this technique. To the best of our knowledge, the present work is the first one to apply this kind of technique on the microalgae classification task. The obtained results show the capabilities of the method to properly classify the data by using as input the low resolution images acquired by a particle analyzer instead of pre-processed features. We also show the improvement provided by the use of data augmentation technique.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"2 1\",\"pages\":\"20-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.0-183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

微藻是单细胞生物,具有有限的物理特征,如大小、形状甚至现在的结构。人工分类可能需要专家付出很大的努力,因为在一小块水样本中可以发现成千上万的微藻。此外,手工分类是一项重要的操作。我们提出了一种深度学习技术来解决这个问题。我们还创建了一个分类数据集,使我们能够采用这种技术。据我们所知,本工作是首次将该技术应用于微藻分类任务。实验结果表明,该方法可以将颗粒分析仪获取的低分辨率图像作为输入,而不是预处理后的特征,从而对数据进行正确的分类。我们还展示了使用数据增强技术所带来的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Microalgae Classification
Microalgae are unicellular organisms that presents limited physical characteristics such as size, shape or even the present structures. Classifying them manually may require great effort from experts since thousands of microalgae can be found in a small sample of water. Furthermore, the manual classification is a non-trivial operation. We proposed a deep learning technique to solve the problem. We also created a classified dataset that allow us to adopt this technique. To the best of our knowledge, the present work is the first one to apply this kind of technique on the microalgae classification task. The obtained results show the capabilities of the method to properly classify the data by using as input the low resolution images acquired by a particle analyzer instead of pre-processed features. We also show the improvement provided by the use of data augmentation technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信