面向孟加拉语处理的词嵌入研究

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Kowsher, M. J. Uddin, A. Tahabilder, Nusrat Jahan Prottasha, Mahid Ahmed, K. M. R. Alam, Tamanna Sultana
{"title":"面向孟加拉语处理的词嵌入研究","authors":"M. Kowsher, M. J. Uddin, A. Tahabilder, Nusrat Jahan Prottasha, Mahid Ahmed, K. M. R. Alam, Tamanna Sultana","doi":"10.14419/ijet.v10i2.31538","DOIUrl":null,"url":null,"abstract":"Progression in machine learning and statistical inference are facilitating the advancement of domains like computer vision, natural language processing (NLP), automation & robotics, and so on. Among the different persuasive improvements in NLP, word embedding is one of the most used and revolutionary techniques. In this paper, we manifest an open-source library for Bangla word extraction systems named BnVec which expects to furnish the Bangla NLP research community by the utilization of some incredible word embedding techniques. The BnVec is splitted up into two parts, the first one is the Bangla suitable defined class to embed words with access to the six most popular word embedding schemes (CountVectorizer, TF-IDF, Hash Vectorizer, Word2vec, fastText, and Glove). The other one is based on the pre-trained distributed word embedding system of Word2vec, fastText, and GloVe. The pre-trained models have been built by collecting content from the newspaper, social media, and Bangla wiki articles. The total number of tokens used to build the models exceeds 395,289,960. The paper additionally depicts the performance of these models by various hyper-parameter tuning and then analyzes the results.","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"34 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BnVec: Towards the Development of Word Embedding for Bangla Language Processing\",\"authors\":\"M. Kowsher, M. J. Uddin, A. Tahabilder, Nusrat Jahan Prottasha, Mahid Ahmed, K. M. R. Alam, Tamanna Sultana\",\"doi\":\"10.14419/ijet.v10i2.31538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Progression in machine learning and statistical inference are facilitating the advancement of domains like computer vision, natural language processing (NLP), automation & robotics, and so on. Among the different persuasive improvements in NLP, word embedding is one of the most used and revolutionary techniques. In this paper, we manifest an open-source library for Bangla word extraction systems named BnVec which expects to furnish the Bangla NLP research community by the utilization of some incredible word embedding techniques. The BnVec is splitted up into two parts, the first one is the Bangla suitable defined class to embed words with access to the six most popular word embedding schemes (CountVectorizer, TF-IDF, Hash Vectorizer, Word2vec, fastText, and Glove). The other one is based on the pre-trained distributed word embedding system of Word2vec, fastText, and GloVe. The pre-trained models have been built by collecting content from the newspaper, social media, and Bangla wiki articles. The total number of tokens used to build the models exceeds 395,289,960. The paper additionally depicts the performance of these models by various hyper-parameter tuning and then analyzes the results.\",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijet.v10i2.31538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijet.v10i2.31538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

机器学习和统计推理的进步促进了计算机视觉、自然语言处理(NLP)、自动化和机器人等领域的进步。在各种说服性的NLP改进中,词嵌入是最常用和最具革命性的技术之一。在本文中,我们展示了一个名为BnVec的孟加拉语词提取系统的开源库,希望通过利用一些令人难以置信的词嵌入技术为孟加拉语NLP研究社区提供帮助。BnVec分为两部分,第一部分是孟加拉语合适的定义类,用于嵌入单词,可以访问六种最流行的单词嵌入方案(CountVectorizer、TF-IDF、Hash Vectorizer、Word2vec、fastText和Glove)。另一种是基于Word2vec、fastText和GloVe的预训练分布式词嵌入系统。通过从报纸、社交媒体和孟加拉维基文章中收集内容,建立了预训练模型。用于构建模型的令牌总数超过395,289,960。此外,本文还描述了这些模型通过各种超参数调整后的性能,并对结果进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BnVec: Towards the Development of Word Embedding for Bangla Language Processing
Progression in machine learning and statistical inference are facilitating the advancement of domains like computer vision, natural language processing (NLP), automation & robotics, and so on. Among the different persuasive improvements in NLP, word embedding is one of the most used and revolutionary techniques. In this paper, we manifest an open-source library for Bangla word extraction systems named BnVec which expects to furnish the Bangla NLP research community by the utilization of some incredible word embedding techniques. The BnVec is splitted up into two parts, the first one is the Bangla suitable defined class to embed words with access to the six most popular word embedding schemes (CountVectorizer, TF-IDF, Hash Vectorizer, Word2vec, fastText, and Glove). The other one is based on the pre-trained distributed word embedding system of Word2vec, fastText, and GloVe. The pre-trained models have been built by collecting content from the newspaper, social media, and Bangla wiki articles. The total number of tokens used to build the models exceeds 395,289,960. The paper additionally depicts the performance of these models by various hyper-parameter tuning and then analyzes the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信