工程机械冷却系统外壳内产生的压降机理

T. Kawano, M. Fuchiwaki
{"title":"工程机械冷却系统外壳内产生的压降机理","authors":"T. Kawano, M. Fuchiwaki","doi":"10.1115/fedsm2021-65578","DOIUrl":null,"url":null,"abstract":"\n A potential way to reduce cooling system noises generated by heavy construction machines is to generate the required cooling airflow with a low fan speed, and one way to accomplish this is to optimize the ventilation path through which the airflow generated by the cooling fan must travel. However, while the computational fluid dynamics (CFD) approach would be effective for modeling the three-dimensional (3D) pressure drop characteristic of such systems, there have been few reports aimed at clarifying the loss generation mechanisms or suggesting minimization methods based on flow field viewpoints. Accordingly, in this study, we visualize the 3D flow field characteristics of an electric cooling fan system installed within the cooling enclosure of a heavy construction machine and investigate the details of the system’s pressure drop mechanisms.\n Our results confirm that airflow pressure declines in areas other than the radiator account for more than half of the reduced pressure experienced by the whole system. Additionally, we found that, in the exhaust side enclosure, pressure drops increased because the exhaust port outlet shapes were not optimized to the annular airflow of the cooling fan. Most notably, we found that in the region before reaching the exhaust port outlets, the airflow from the fan repeatedly collides with obstacles within the enclosure, thus producing stagnation and turbulence that exacerbates pressure drops before being expelled into the outside environment.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure Drop Mechanisms Generated in a Cooling System Enclosure of Construction Machinery\",\"authors\":\"T. Kawano, M. Fuchiwaki\",\"doi\":\"10.1115/fedsm2021-65578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A potential way to reduce cooling system noises generated by heavy construction machines is to generate the required cooling airflow with a low fan speed, and one way to accomplish this is to optimize the ventilation path through which the airflow generated by the cooling fan must travel. However, while the computational fluid dynamics (CFD) approach would be effective for modeling the three-dimensional (3D) pressure drop characteristic of such systems, there have been few reports aimed at clarifying the loss generation mechanisms or suggesting minimization methods based on flow field viewpoints. Accordingly, in this study, we visualize the 3D flow field characteristics of an electric cooling fan system installed within the cooling enclosure of a heavy construction machine and investigate the details of the system’s pressure drop mechanisms.\\n Our results confirm that airflow pressure declines in areas other than the radiator account for more than half of the reduced pressure experienced by the whole system. Additionally, we found that, in the exhaust side enclosure, pressure drops increased because the exhaust port outlet shapes were not optimized to the annular airflow of the cooling fan. Most notably, we found that in the region before reaching the exhaust port outlets, the airflow from the fan repeatedly collides with obstacles within the enclosure, thus producing stagnation and turbulence that exacerbates pressure drops before being expelled into the outside environment.\",\"PeriodicalId\":23636,\"journal\":{\"name\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2021-65578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

减少重型建筑机械产生的冷却系统噪音的一种潜在方法是用较低的风扇转速产生所需的冷却气流,实现这一目标的一种方法是优化冷却风扇产生的气流必须经过的通风路径。然而,尽管计算流体动力学(CFD)方法可以有效地模拟此类系统的三维压降特性,但很少有报道旨在阐明损失产生机制或提出基于流场观点的最小化方法。因此,在本研究中,我们可视化了安装在重型工程机械冷却外壳内的电动冷却风扇系统的三维流场特征,并研究了该系统压降机制的细节。我们的结果证实,除散热器以外的区域的气流压力下降占整个系统所经历的压力降低的一半以上。此外,我们发现,在排气侧外壳中,由于排气口出口形状未针对冷却风扇的环形气流进行优化,压降增加。最值得注意的是,我们发现在到达排气口出口之前的区域,风扇的气流反复与外壳内的障碍物碰撞,从而产生停滞和湍流,从而加剧了压降,然后被排出到外部环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure Drop Mechanisms Generated in a Cooling System Enclosure of Construction Machinery
A potential way to reduce cooling system noises generated by heavy construction machines is to generate the required cooling airflow with a low fan speed, and one way to accomplish this is to optimize the ventilation path through which the airflow generated by the cooling fan must travel. However, while the computational fluid dynamics (CFD) approach would be effective for modeling the three-dimensional (3D) pressure drop characteristic of such systems, there have been few reports aimed at clarifying the loss generation mechanisms or suggesting minimization methods based on flow field viewpoints. Accordingly, in this study, we visualize the 3D flow field characteristics of an electric cooling fan system installed within the cooling enclosure of a heavy construction machine and investigate the details of the system’s pressure drop mechanisms. Our results confirm that airflow pressure declines in areas other than the radiator account for more than half of the reduced pressure experienced by the whole system. Additionally, we found that, in the exhaust side enclosure, pressure drops increased because the exhaust port outlet shapes were not optimized to the annular airflow of the cooling fan. Most notably, we found that in the region before reaching the exhaust port outlets, the airflow from the fan repeatedly collides with obstacles within the enclosure, thus producing stagnation and turbulence that exacerbates pressure drops before being expelled into the outside environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信