基于码本模型的实时前景-背景分割

Kyungnam Kim , Thanarat H. Chalidabhongse , David Harwood , Larry Davis
{"title":"基于码本模型的实时前景-背景分割","authors":"Kyungnam Kim ,&nbsp;Thanarat H. Chalidabhongse ,&nbsp;David Harwood ,&nbsp;Larry Davis","doi":"10.1016/j.rti.2004.12.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>We present a real-time algorithm for foreground–background segmentation. Sample background values at each pixel are quantized into codebooks which represent a compressed form of background model for a long image sequence. This allows us to capture structural background variation due to periodic-like motion over a long period of time under limited memory. The codebook representation is efficient in memory and speed compared with other background modeling techniques. Our method can handle scenes containing moving backgrounds or </span>illumination variations<span>, and it achieves robust detection for different types of videos. We compared our method with other multimode modeling techniques.</span></p><p>In addition to the basic algorithm, two features improving the algorithm are presented—layered modeling/detection and adaptive codebook updating.</p><p>For performance evaluation, we have applied perturbation detection rate analysis to four background subtraction algorithms and two videos of different types of scenes.</p></div>","PeriodicalId":101062,"journal":{"name":"Real-Time Imaging","volume":"11 3","pages":"Pages 172-185"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rti.2004.12.004","citationCount":"1601","resultStr":"{\"title\":\"Real-time foreground–background segmentation using codebook model\",\"authors\":\"Kyungnam Kim ,&nbsp;Thanarat H. Chalidabhongse ,&nbsp;David Harwood ,&nbsp;Larry Davis\",\"doi\":\"10.1016/j.rti.2004.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We present a real-time algorithm for foreground–background segmentation. Sample background values at each pixel are quantized into codebooks which represent a compressed form of background model for a long image sequence. This allows us to capture structural background variation due to periodic-like motion over a long period of time under limited memory. The codebook representation is efficient in memory and speed compared with other background modeling techniques. Our method can handle scenes containing moving backgrounds or </span>illumination variations<span>, and it achieves robust detection for different types of videos. We compared our method with other multimode modeling techniques.</span></p><p>In addition to the basic algorithm, two features improving the algorithm are presented—layered modeling/detection and adaptive codebook updating.</p><p>For performance evaluation, we have applied perturbation detection rate analysis to four background subtraction algorithms and two videos of different types of scenes.</p></div>\",\"PeriodicalId\":101062,\"journal\":{\"name\":\"Real-Time Imaging\",\"volume\":\"11 3\",\"pages\":\"Pages 172-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.rti.2004.12.004\",\"citationCount\":\"1601\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real-Time Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077201405000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077201405000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1601

摘要

提出了一种前景-背景实时分割算法。每个像素处的样本背景值被量化为码本,码本代表长图像序列的压缩形式的背景模型。这使我们能够在有限的内存下捕获由于长时间的周期性运动而引起的结构背景变化。与其他背景建模技术相比,码本表示在内存和速度上都是有效的。我们的方法可以处理包含移动背景或光照变化的场景,并对不同类型的视频实现鲁棒检测。我们将我们的方法与其他多模建模技术进行了比较。在基本算法的基础上,提出了分层建模/检测和自适应码本更新两个改进算法的特性。为了进行性能评估,我们对四种背景减法算法和两种不同类型场景的视频进行了摄动检测率分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time foreground–background segmentation using codebook model

We present a real-time algorithm for foreground–background segmentation. Sample background values at each pixel are quantized into codebooks which represent a compressed form of background model for a long image sequence. This allows us to capture structural background variation due to periodic-like motion over a long period of time under limited memory. The codebook representation is efficient in memory and speed compared with other background modeling techniques. Our method can handle scenes containing moving backgrounds or illumination variations, and it achieves robust detection for different types of videos. We compared our method with other multimode modeling techniques.

In addition to the basic algorithm, two features improving the algorithm are presented—layered modeling/detection and adaptive codebook updating.

For performance evaluation, we have applied perturbation detection rate analysis to four background subtraction algorithms and two videos of different types of scenes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信