N. K. Gayday, N. Goryachev, I. M. Khasanov, E. Goshko
{"title":"从复杂地球物理资料看东南亚纳-柯雷马褶皱系深部构造特征","authors":"N. K. Gayday, N. Goryachev, I. M. Khasanov, E. Goshko","doi":"10.5800/gt-2020-11-4-0501","DOIUrl":null,"url":null,"abstract":"Ore deposits of the Magadan region are now in the focus of comprehensive studies as information on their deep structure is needed for both subsoil prospecting and regional development planning. This article presents the research results for the southeastern flank of the Yana-Kolyma orogenic belt. This area located at the junction with the Okhotsk-Koryak orogenic belt was investigated using the northeastern segment of the regional geophysical profile 3-DV. We analyzed the frequency-energy sections of the crust along the profile, 3D crustal density model of the entire study area, and magnetic, geoelectric and gravimagnetic characteristics of the crust. Complex data interpretation allowed tracing the crustal fault zones, areas wherein the crust material was strongly reworked, and zones of quasi-horizontal stratification. Considering the revealed features of the physical parameters of the crust material, we conclude that the currently accepted boundaries of individual tectonic blocks in the study area need to be adjusted. The northern boundary of the Balygychan uplift should be mapped along the Pautov fault. The Srednekansky branch of the Inyali-Debinsky synclinorium should be considered a transitional block that belongs to the Sugoi synclinorium, and its name should be changed to the Orotukan block.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"STRUCTURAL FEATURES OF THE DEEP STRUCTURE OF THE SOUTHEASTERN YANA-KOLYMA FOLD SYSTEM FROM COMPLEX GEOPHYSICAL DATA\",\"authors\":\"N. K. Gayday, N. Goryachev, I. M. Khasanov, E. Goshko\",\"doi\":\"10.5800/gt-2020-11-4-0501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ore deposits of the Magadan region are now in the focus of comprehensive studies as information on their deep structure is needed for both subsoil prospecting and regional development planning. This article presents the research results for the southeastern flank of the Yana-Kolyma orogenic belt. This area located at the junction with the Okhotsk-Koryak orogenic belt was investigated using the northeastern segment of the regional geophysical profile 3-DV. We analyzed the frequency-energy sections of the crust along the profile, 3D crustal density model of the entire study area, and magnetic, geoelectric and gravimagnetic characteristics of the crust. Complex data interpretation allowed tracing the crustal fault zones, areas wherein the crust material was strongly reworked, and zones of quasi-horizontal stratification. Considering the revealed features of the physical parameters of the crust material, we conclude that the currently accepted boundaries of individual tectonic blocks in the study area need to be adjusted. The northern boundary of the Balygychan uplift should be mapped along the Pautov fault. The Srednekansky branch of the Inyali-Debinsky synclinorium should be considered a transitional block that belongs to the Sugoi synclinorium, and its name should be changed to the Orotukan block.\",\"PeriodicalId\":44925,\"journal\":{\"name\":\"Geodynamics & Tectonophysics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodynamics & Tectonophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5800/gt-2020-11-4-0501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics & Tectonophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2020-11-4-0501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
STRUCTURAL FEATURES OF THE DEEP STRUCTURE OF THE SOUTHEASTERN YANA-KOLYMA FOLD SYSTEM FROM COMPLEX GEOPHYSICAL DATA
Ore deposits of the Magadan region are now in the focus of comprehensive studies as information on their deep structure is needed for both subsoil prospecting and regional development planning. This article presents the research results for the southeastern flank of the Yana-Kolyma orogenic belt. This area located at the junction with the Okhotsk-Koryak orogenic belt was investigated using the northeastern segment of the regional geophysical profile 3-DV. We analyzed the frequency-energy sections of the crust along the profile, 3D crustal density model of the entire study area, and magnetic, geoelectric and gravimagnetic characteristics of the crust. Complex data interpretation allowed tracing the crustal fault zones, areas wherein the crust material was strongly reworked, and zones of quasi-horizontal stratification. Considering the revealed features of the physical parameters of the crust material, we conclude that the currently accepted boundaries of individual tectonic blocks in the study area need to be adjusted. The northern boundary of the Balygychan uplift should be mapped along the Pautov fault. The Srednekansky branch of the Inyali-Debinsky synclinorium should be considered a transitional block that belongs to the Sugoi synclinorium, and its name should be changed to the Orotukan block.
期刊介绍:
The purpose of the journal is facilitating awareness of the international scientific community of new data on geodynamics of continental lithosphere in a wide range of geolchronological data, as well as tectonophysics as an integral part of geodynamics, in which physico-mathematical and structural-geological concepts are applied to deal with topical problems of the evolution of structures and processes taking place simultaneously in the lithosphere. Complex geological and geophysical studies of the Earth tectonosphere have been significantly enhanced in the current decade across the world. As a result, a large number of publications are developed based on thorough analyses of paleo- and modern geodynamic processes with reference to results of properly substantiated physical experiments, field data and tectonophysical calculations. Comprehensive research of that type, followed by consolidation and generalization of research results and conclusions, conforms to the start-of-the-art of the Earth’s sciences.