基于PM反向扩散的塑料输液组合容器视觉检测系统设计

Hui Zhang, T. Shi, Shi-Qiang He, Haizhou Wang, Feng Ruan
{"title":"基于PM反向扩散的塑料输液组合容器视觉检测系统设计","authors":"Hui Zhang, T. Shi, Shi-Qiang He, Haizhou Wang, Feng Ruan","doi":"10.1109/IHMSC.2015.231","DOIUrl":null,"url":null,"abstract":"Aimed at the defect of black spots, hair, bubbles in medical PP infusion, infusion defect detection system based on machine vision is proposed. Firstly, r design the mechanical actuators, electrical control, and image acquisition system, then use reverse PM diffusion algorithm to enhance the defect area, extracting this area by difference after binarization, and filter the image. Secondly, SVM is used to classify defects and the defective area automatically. Meanwhile, in order to improve the performance of the classifier, the paper selected the best classification parameters based cross validation. The results show that the method is high detection accuracy and requires less training samples, applies to different defect types with accuracy rate of 95%.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"45 1 1","pages":"306-310"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual Detection System Design for Plastic Infusion Combinations Containers Based on Reverse PM Diffusion\",\"authors\":\"Hui Zhang, T. Shi, Shi-Qiang He, Haizhou Wang, Feng Ruan\",\"doi\":\"10.1109/IHMSC.2015.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aimed at the defect of black spots, hair, bubbles in medical PP infusion, infusion defect detection system based on machine vision is proposed. Firstly, r design the mechanical actuators, electrical control, and image acquisition system, then use reverse PM diffusion algorithm to enhance the defect area, extracting this area by difference after binarization, and filter the image. Secondly, SVM is used to classify defects and the defective area automatically. Meanwhile, in order to improve the performance of the classifier, the paper selected the best classification parameters based cross validation. The results show that the method is high detection accuracy and requires less training samples, applies to different defect types with accuracy rate of 95%.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"45 1 1\",\"pages\":\"306-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对医用PP输液中存在的黑点、毛状、气泡等缺陷,提出了基于机器视觉的输液缺陷检测系统。首先设计机械执行器、电气控制和图像采集系统,然后利用反向PM扩散算法对缺陷区域进行增强,二值化后通过差值提取缺陷区域,对图像进行滤波。其次,利用支持向量机对缺陷和缺陷区域进行自动分类;同时,为了提高分类器的性能,本文选择了基于交叉验证的最佳分类参数。结果表明,该方法检测准确率高,所需训练样本少,适用于不同的缺陷类型,准确率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Detection System Design for Plastic Infusion Combinations Containers Based on Reverse PM Diffusion
Aimed at the defect of black spots, hair, bubbles in medical PP infusion, infusion defect detection system based on machine vision is proposed. Firstly, r design the mechanical actuators, electrical control, and image acquisition system, then use reverse PM diffusion algorithm to enhance the defect area, extracting this area by difference after binarization, and filter the image. Secondly, SVM is used to classify defects and the defective area automatically. Meanwhile, in order to improve the performance of the classifier, the paper selected the best classification parameters based cross validation. The results show that the method is high detection accuracy and requires less training samples, applies to different defect types with accuracy rate of 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信