PathMiner:用于挖掘基于路径的代码表示的库

V. Kovalenko, Egor Bogomolov, T. Bryksin, Alberto Bacchelli
{"title":"PathMiner:用于挖掘基于路径的代码表示的库","authors":"V. Kovalenko, Egor Bogomolov, T. Bryksin, Alberto Bacchelli","doi":"10.1109/MSR.2019.00013","DOIUrl":null,"url":null,"abstract":"One recent, significant advance in modeling source code for machine learning algorithms has been the introduction of path-based representation – an approach consisting in representing a snippet of code as a collection of paths from its syntax tree. Such representation efficiently captures the structure of code, which, in turn, carries its semantics and other information. Building the path-based representation involves parsing the code and extracting the paths from its syntax tree; these steps build up to a substantial technical job. With no common reusable toolkit existing for this task, the burden of mining diverts the focus of researchers from the essential work and hinders newcomers in the field of machine learning on code. In this paper, we present PathMiner – an open-source library for mining path-based representations of code. PathMiner is fast, flexible, well-tested, and easily extensible to support input code in any common programming language. Preprint [https://doi.org/10.5281/zenodo.2595271]; released tool [https://doi.org/10.5281/zenodo.2595257].","PeriodicalId":6706,"journal":{"name":"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)","volume":"31 1","pages":"13-17"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"PathMiner: A Library for Mining of Path-Based Representations of Code\",\"authors\":\"V. Kovalenko, Egor Bogomolov, T. Bryksin, Alberto Bacchelli\",\"doi\":\"10.1109/MSR.2019.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One recent, significant advance in modeling source code for machine learning algorithms has been the introduction of path-based representation – an approach consisting in representing a snippet of code as a collection of paths from its syntax tree. Such representation efficiently captures the structure of code, which, in turn, carries its semantics and other information. Building the path-based representation involves parsing the code and extracting the paths from its syntax tree; these steps build up to a substantial technical job. With no common reusable toolkit existing for this task, the burden of mining diverts the focus of researchers from the essential work and hinders newcomers in the field of machine learning on code. In this paper, we present PathMiner – an open-source library for mining path-based representations of code. PathMiner is fast, flexible, well-tested, and easily extensible to support input code in any common programming language. Preprint [https://doi.org/10.5281/zenodo.2595271]; released tool [https://doi.org/10.5281/zenodo.2595257].\",\"PeriodicalId\":6706,\"journal\":{\"name\":\"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)\",\"volume\":\"31 1\",\"pages\":\"13-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSR.2019.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

最近,机器学习算法在源代码建模方面的一个重大进展是引入了基于路径的表示——一种将代码片段表示为语法树中路径的集合的方法。这种表示有效地捕获了代码的结构,而代码的结构又承载了代码的语义和其他信息。构建基于路径的表示包括解析代码并从其语法树中提取路径;这些步骤构成了一项实质性的技术工作。由于这项任务没有通用的可重用工具包,挖掘的负担转移了研究人员对基本工作的关注,并阻碍了机器学习领域的新人。在本文中,我们介绍了PathMiner——一个用于挖掘基于路径的代码表示的开源库。PathMiner快速、灵活、经过良好测试,并且易于扩展以支持任何通用编程语言的输入代码。预印本[https://doi.org/10.5281/zenodo.2595271];已发布工具[https://doi.org/10.5281/zenodo.2595257]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PathMiner: A Library for Mining of Path-Based Representations of Code
One recent, significant advance in modeling source code for machine learning algorithms has been the introduction of path-based representation – an approach consisting in representing a snippet of code as a collection of paths from its syntax tree. Such representation efficiently captures the structure of code, which, in turn, carries its semantics and other information. Building the path-based representation involves parsing the code and extracting the paths from its syntax tree; these steps build up to a substantial technical job. With no common reusable toolkit existing for this task, the burden of mining diverts the focus of researchers from the essential work and hinders newcomers in the field of machine learning on code. In this paper, we present PathMiner – an open-source library for mining path-based representations of code. PathMiner is fast, flexible, well-tested, and easily extensible to support input code in any common programming language. Preprint [https://doi.org/10.5281/zenodo.2595271]; released tool [https://doi.org/10.5281/zenodo.2595257].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信