基于机械耦合MEMS神经网络的信号分类

Hamed Nikfarjam, Amin Abbasalipour, Mehari K. Tesfay, M. Hasan, S. Pourkamali, R. Jafari, F. Alsaleem
{"title":"基于机械耦合MEMS神经网络的信号分类","authors":"Hamed Nikfarjam, Amin Abbasalipour, Mehari K. Tesfay, M. Hasan, S. Pourkamali, R. Jafari, F. Alsaleem","doi":"10.1109/SENSORS47087.2021.9639616","DOIUrl":null,"url":null,"abstract":"This paper reports on the implementation and operation of the first micro-electromechanical (MEMS) network to perform basic neural computing. The device is comprised of a mechanically coupled network of three electrostatically controlled micro-structures with two of the coupled structures acting as the input layer and the third as the output (computing) layer. It has been shown that such device can be programed by application of appropriate bias voltages to the electrostatic control electrodes so that it can distinguish between a ramp (gradually increasing) input signal and a step (abruptly rising) input signal. The results serve as the proof of concept and a pre-cursor to performing more complex computational tasks using coupled micro-structures acting as a network of interacting neurons.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"37 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signal Classification Using a Mechanically Coupled MEMS Neural Network\",\"authors\":\"Hamed Nikfarjam, Amin Abbasalipour, Mehari K. Tesfay, M. Hasan, S. Pourkamali, R. Jafari, F. Alsaleem\",\"doi\":\"10.1109/SENSORS47087.2021.9639616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the implementation and operation of the first micro-electromechanical (MEMS) network to perform basic neural computing. The device is comprised of a mechanically coupled network of three electrostatically controlled micro-structures with two of the coupled structures acting as the input layer and the third as the output (computing) layer. It has been shown that such device can be programed by application of appropriate bias voltages to the electrostatic control electrodes so that it can distinguish between a ramp (gradually increasing) input signal and a step (abruptly rising) input signal. The results serve as the proof of concept and a pre-cursor to performing more complex computational tasks using coupled micro-structures acting as a network of interacting neurons.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"37 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报道了首个用于基本神经计算的微机电(MEMS)网络的实现和运行。该装置由三个静电控制微结构组成的机械耦合网络组成,其中两个耦合结构作为输入层,第三个作为输出(计算)层。已经证明,这种装置可以通过在静电控制电极上施加适当的偏置电压来编程,使其能够区分斜坡(逐渐增加)输入信号和阶跃(突然上升)输入信号。这些结果可以作为概念的证明和使用耦合微观结构作为相互作用神经元网络来执行更复杂的计算任务的前光标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal Classification Using a Mechanically Coupled MEMS Neural Network
This paper reports on the implementation and operation of the first micro-electromechanical (MEMS) network to perform basic neural computing. The device is comprised of a mechanically coupled network of three electrostatically controlled micro-structures with two of the coupled structures acting as the input layer and the third as the output (computing) layer. It has been shown that such device can be programed by application of appropriate bias voltages to the electrostatic control electrodes so that it can distinguish between a ramp (gradually increasing) input signal and a step (abruptly rising) input signal. The results serve as the proof of concept and a pre-cursor to performing more complex computational tasks using coupled micro-structures acting as a network of interacting neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信