CnGAN:用于非重叠用户的跨网络用户偏好生成的生成对抗网络

Dilruk Perera, Roger Zimmermann
{"title":"CnGAN:用于非重叠用户的跨网络用户偏好生成的生成对抗网络","authors":"Dilruk Perera, Roger Zimmermann","doi":"10.1145/3308558.3313733","DOIUrl":null,"url":null,"abstract":"A major drawback of cross-network recommender solutions is that they can only be applied to users that are overlapped across networks. Thus, the non-overlapped users, which form the majority of users are ignored. As a solution, we propose CnGAN, a novel multi-task learning based, encoder-GAN-recommender architecture. The proposed model synthetically generates source network user preferences for non-overlapped users by learning the mapping from target to source network preference manifolds. The resultant user preferences are used in a Siamese network based neural recommender architecture. Furthermore, we propose a novel user-based pairwise loss function for recommendations using implicit interactions to better guide the generation process in the multi-task learning environment. We illustrate our solution by generating user preferences on the Twitter source network for recommendations on the YouTube target network. Extensive experiments show that the generated preferences can be used to improve recommendations for non-overlapped users. The resultant recommendations achieve superior performance compared to the state-of-the-art cross-network recommender solutions in terms of accuracy, novelty and diversity.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"CnGAN: Generative Adversarial Networks for Cross-network user preference generation for non-overlapped users\",\"authors\":\"Dilruk Perera, Roger Zimmermann\",\"doi\":\"10.1145/3308558.3313733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major drawback of cross-network recommender solutions is that they can only be applied to users that are overlapped across networks. Thus, the non-overlapped users, which form the majority of users are ignored. As a solution, we propose CnGAN, a novel multi-task learning based, encoder-GAN-recommender architecture. The proposed model synthetically generates source network user preferences for non-overlapped users by learning the mapping from target to source network preference manifolds. The resultant user preferences are used in a Siamese network based neural recommender architecture. Furthermore, we propose a novel user-based pairwise loss function for recommendations using implicit interactions to better guide the generation process in the multi-task learning environment. We illustrate our solution by generating user preferences on the Twitter source network for recommendations on the YouTube target network. Extensive experiments show that the generated preferences can be used to improve recommendations for non-overlapped users. The resultant recommendations achieve superior performance compared to the state-of-the-art cross-network recommender solutions in terms of accuracy, novelty and diversity.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

跨网络推荐解决方案的一个主要缺点是它们只能应用于跨网络重叠的用户。因此,构成大多数用户的非重叠用户被忽略。作为解决方案,我们提出了CnGAN,一种新颖的基于多任务学习的编码器- gan -推荐架构。该模型通过学习目标网络到源网络偏好流形的映射,综合生成非重叠用户的源网络用户偏好。生成的用户偏好被用于基于Siamese网络的神经推荐架构。此外,我们提出了一种新的基于用户的配对损失函数,用于使用隐式交互的推荐,以更好地指导多任务学习环境下的生成过程。我们通过在Twitter源网络上为YouTube目标网络上的推荐生成用户偏好来说明我们的解决方案。大量实验表明,生成的偏好可以用于改进对非重叠用户的推荐。与最先进的跨网络推荐解决方案相比,由此产生的推荐在准确性、新颖性和多样性方面取得了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CnGAN: Generative Adversarial Networks for Cross-network user preference generation for non-overlapped users
A major drawback of cross-network recommender solutions is that they can only be applied to users that are overlapped across networks. Thus, the non-overlapped users, which form the majority of users are ignored. As a solution, we propose CnGAN, a novel multi-task learning based, encoder-GAN-recommender architecture. The proposed model synthetically generates source network user preferences for non-overlapped users by learning the mapping from target to source network preference manifolds. The resultant user preferences are used in a Siamese network based neural recommender architecture. Furthermore, we propose a novel user-based pairwise loss function for recommendations using implicit interactions to better guide the generation process in the multi-task learning environment. We illustrate our solution by generating user preferences on the Twitter source network for recommendations on the YouTube target network. Extensive experiments show that the generated preferences can be used to improve recommendations for non-overlapped users. The resultant recommendations achieve superior performance compared to the state-of-the-art cross-network recommender solutions in terms of accuracy, novelty and diversity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信