{"title":"太赫兹量子级联激光器-过去,现在和潜在的未来","authors":"E. Linfield, A. Davies, P. Dean","doi":"10.1109/IRMMW-THZ.2015.7327749","DOIUrl":null,"url":null,"abstract":"Since their first demonstration in 2002, the development of terahertz frequency quantum cascade lasers has been extremely rapid. We overview some of the advances that have taken place and which have made the terahertz quantum cascade laser such a ubiquitous source. We also consider potential future directions for terahertz quantum cascade laser technology, including its use in satellite-borne instrumentation for future Earth observation and planetary science missions.","PeriodicalId":6577,"journal":{"name":"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)","volume":"8 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Terahertz quantum cascade lasers — The past, present, and potential future\",\"authors\":\"E. Linfield, A. Davies, P. Dean\",\"doi\":\"10.1109/IRMMW-THZ.2015.7327749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since their first demonstration in 2002, the development of terahertz frequency quantum cascade lasers has been extremely rapid. We overview some of the advances that have taken place and which have made the terahertz quantum cascade laser such a ubiquitous source. We also consider potential future directions for terahertz quantum cascade laser technology, including its use in satellite-borne instrumentation for future Earth observation and planetary science missions.\",\"PeriodicalId\":6577,\"journal\":{\"name\":\"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)\",\"volume\":\"8 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THZ.2015.7327749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2015.7327749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Terahertz quantum cascade lasers — The past, present, and potential future
Since their first demonstration in 2002, the development of terahertz frequency quantum cascade lasers has been extremely rapid. We overview some of the advances that have taken place and which have made the terahertz quantum cascade laser such a ubiquitous source. We also consider potential future directions for terahertz quantum cascade laser technology, including its use in satellite-borne instrumentation for future Earth observation and planetary science missions.