基于阴影去除的室内环境鲁棒行人检测与跟踪

Yunbiao Chen, Hui Yang, Chenxiang Li, S. Pu, Jianyang Zhou, Lingxiang Zheng
{"title":"基于阴影去除的室内环境鲁棒行人检测与跟踪","authors":"Yunbiao Chen, Hui Yang, Chenxiang Li, S. Pu, Jianyang Zhou, Lingxiang Zheng","doi":"10.1109/ICAWST.2013.6765508","DOIUrl":null,"url":null,"abstract":"The shadows of pedestrians decrease the tracking performance dramatically in video surveillance. This paper presents a method of shadow removal to improve the accuracy of pedestrian detection and tracking in indoor environments. The proposed method can be divided into four steps: build a background model which can be automatically updated, extract moving objects region, eliminate moving objects shadows, classify and track pedestrians in moving objects region from which shadows have been eliminated. In this work, we propose a methodology using the foreground frames without shadows to detect and track the pedestrians across training datasets. Experimental results show that our approach is capable of dealing with shadows and detecting moving pedestrians in cluttered environment. It indicates that this proposal can improve the performance of indoor pedestrians tracking.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"6 1","pages":"590-596"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust pedestrian detection and tracking with shadow removal in indoor environments\",\"authors\":\"Yunbiao Chen, Hui Yang, Chenxiang Li, S. Pu, Jianyang Zhou, Lingxiang Zheng\",\"doi\":\"10.1109/ICAWST.2013.6765508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shadows of pedestrians decrease the tracking performance dramatically in video surveillance. This paper presents a method of shadow removal to improve the accuracy of pedestrian detection and tracking in indoor environments. The proposed method can be divided into four steps: build a background model which can be automatically updated, extract moving objects region, eliminate moving objects shadows, classify and track pedestrians in moving objects region from which shadows have been eliminated. In this work, we propose a methodology using the foreground frames without shadows to detect and track the pedestrians across training datasets. Experimental results show that our approach is capable of dealing with shadows and detecting moving pedestrians in cluttered environment. It indicates that this proposal can improve the performance of indoor pedestrians tracking.\",\"PeriodicalId\":68697,\"journal\":{\"name\":\"炎黄地理\",\"volume\":\"6 1\",\"pages\":\"590-596\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"炎黄地理\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2013.6765508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

行人的阴影严重影响了视频监控的跟踪性能。为了提高室内环境下行人检测与跟踪的精度,提出了一种阴影去除方法。该方法分为四个步骤:建立可自动更新的背景模型,提取运动物体区域,消除运动物体阴影,对消除阴影的运动物体区域中的行人进行分类和跟踪。在这项工作中,我们提出了一种使用无阴影的前景帧来检测和跟踪训练数据集上的行人的方法。实验结果表明,该方法能够有效地处理阴影,并在杂乱的环境中检测出移动的行人。结果表明,该方法可以提高室内行人跟踪的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust pedestrian detection and tracking with shadow removal in indoor environments
The shadows of pedestrians decrease the tracking performance dramatically in video surveillance. This paper presents a method of shadow removal to improve the accuracy of pedestrian detection and tracking in indoor environments. The proposed method can be divided into four steps: build a background model which can be automatically updated, extract moving objects region, eliminate moving objects shadows, classify and track pedestrians in moving objects region from which shadows have been eliminated. In this work, we propose a methodology using the foreground frames without shadows to detect and track the pedestrians across training datasets. Experimental results show that our approach is capable of dealing with shadows and detecting moving pedestrians in cluttered environment. It indicates that this proposal can improve the performance of indoor pedestrians tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信