循环广义迭代函数系统

IF 0.9 Q3 MATHEMATICS, APPLIED
Rajan Pasupathi, Arya Kumar Bedabrata Chand, María Antonia Navascués, María Victoria Sebastián
{"title":"循环广义迭代函数系统","authors":"Rajan Pasupathi,&nbsp;Arya Kumar Bedabrata Chand,&nbsp;María Antonia Navascués,&nbsp;María Victoria Sebastián","doi":"10.1002/cmm4.1202","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce the notion of cyclic generalized iterated function system (GIFS), which is a family of functions <math>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>…</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>M</mi>\n </mrow>\n </msub>\n <mo>:</mo>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msup>\n <mo>→</mo>\n <mi>X</mi>\n </mrow></math>, where each <math>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow></math> is a cyclic generalized <math>\n <mrow>\n <mi>φ</mi>\n </mrow></math>-contraction (contractive) map on a collection of subsets <math>\n <mrow>\n <msubsup>\n <mrow>\n <mo>{</mo>\n <msub>\n <mrow>\n <mi>B</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msubsup>\n </mrow></math> of a complete metric space <math>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow></math> respectively, and <math>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow></math> are natural numbers. When <math>\n <mrow>\n <msub>\n <mrow>\n <mi>B</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>…</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow></math> are closed subsets of <i>X</i>, we show the existence of attractor of this cyclic GIFS, and investigate its properties. Further, we extend our ideas to cyclic countable GIFS.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1202","citationCount":"5","resultStr":"{\"title\":\"Cyclic generalized iterated function systems\",\"authors\":\"Rajan Pasupathi,&nbsp;Arya Kumar Bedabrata Chand,&nbsp;María Antonia Navascués,&nbsp;María Victoria Sebastián\",\"doi\":\"10.1002/cmm4.1202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we introduce the notion of cyclic generalized iterated function system (GIFS), which is a family of functions <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mi>…</mi>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n </msub>\\n <mo>:</mo>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msup>\\n <mo>→</mo>\\n <mi>X</mi>\\n </mrow></math>, where each <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n </mrow></math> is a cyclic generalized <math>\\n <mrow>\\n <mi>φ</mi>\\n </mrow></math>-contraction (contractive) map on a collection of subsets <math>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mrow>\\n <mi>B</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msubsup>\\n </mrow></math> of a complete metric space <math>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow></math> respectively, and <math>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow></math> are natural numbers. When <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>B</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>…</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow></math> are closed subsets of <i>X</i>, we show the existence of attractor of this cyclic GIFS, and investigate its properties. Further, we extend our ideas to cyclic countable GIFS.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1202\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们引入了循环广义迭代函数系统(GIFS)的概念,它是一系列函数f 1, f 2,…,f M:X k→X,其中每个f i是一个循环广义φ -收缩映射在子集{Bj} j = 1 p的完备度量空间(X, d), k,M p是自然数。当B j, j = 1,2,…,p是X的闭子集时,我们证明了这个循环gif的吸引子的存在性,并研究了它的性质。此外,我们将我们的想法扩展到循环可数gif。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic generalized iterated function systems

In this article, we introduce the notion of cyclic generalized iterated function system (GIFS), which is a family of functions f 1 , f 2 , , f M : X k X , where each f i is a cyclic generalized φ -contraction (contractive) map on a collection of subsets { B j } j = 1 p of a complete metric space ( X , d ) respectively, and k , M , p are natural numbers. When B j , j = 1 , 2 , , p are closed subsets of X, we show the existence of attractor of this cyclic GIFS, and investigate its properties. Further, we extend our ideas to cyclic countable GIFS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信