Rajan Pasupathi, Arya Kumar Bedabrata Chand, María Antonia Navascués, María Victoria Sebastián
下载PDF
{"title":"循环广义迭代函数系统","authors":"Rajan Pasupathi, Arya Kumar Bedabrata Chand, María Antonia Navascués, María Victoria Sebastián","doi":"10.1002/cmm4.1202","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce the notion of cyclic generalized iterated function system (GIFS), which is a family of functions <math>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>…</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>M</mi>\n </mrow>\n </msub>\n <mo>:</mo>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msup>\n <mo>→</mo>\n <mi>X</mi>\n </mrow></math>, where each <math>\n <mrow>\n <msub>\n <mrow>\n <mi>f</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow></math> is a cyclic generalized <math>\n <mrow>\n <mi>φ</mi>\n </mrow></math>-contraction (contractive) map on a collection of subsets <math>\n <mrow>\n <msubsup>\n <mrow>\n <mo>{</mo>\n <msub>\n <mrow>\n <mi>B</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msubsup>\n </mrow></math> of a complete metric space <math>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow></math> respectively, and <math>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow></math> are natural numbers. When <math>\n <mrow>\n <msub>\n <mrow>\n <mi>B</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>…</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow></math> are closed subsets of <i>X</i>, we show the existence of attractor of this cyclic GIFS, and investigate its properties. Further, we extend our ideas to cyclic countable GIFS.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1202","citationCount":"5","resultStr":"{\"title\":\"Cyclic generalized iterated function systems\",\"authors\":\"Rajan Pasupathi, Arya Kumar Bedabrata Chand, María Antonia Navascués, María Victoria Sebastián\",\"doi\":\"10.1002/cmm4.1202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we introduce the notion of cyclic generalized iterated function system (GIFS), which is a family of functions <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mi>…</mi>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n </msub>\\n <mo>:</mo>\\n <msup>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </msup>\\n <mo>→</mo>\\n <mi>X</mi>\\n </mrow></math>, where each <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n </mrow></math> is a cyclic generalized <math>\\n <mrow>\\n <mi>φ</mi>\\n </mrow></math>-contraction (contractive) map on a collection of subsets <math>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mrow>\\n <mi>B</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msubsup>\\n </mrow></math> of a complete metric space <math>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <mo>)</mo>\\n </mrow></math> respectively, and <math>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow></math> are natural numbers. When <math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>B</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>…</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow></math> are closed subsets of <i>X</i>, we show the existence of attractor of this cyclic GIFS, and investigate its properties. Further, we extend our ideas to cyclic countable GIFS.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1202\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
引用
批量引用