D. Arney, M. Pajic, J. Goldman, Insup Lee, R. Mangharam, O. Sokolsky
{"title":"面向闭环医疗设备系统中的患者安全","authors":"D. Arney, M. Pajic, J. Goldman, Insup Lee, R. Mangharam, O. Sokolsky","doi":"10.1145/1795194.1795214","DOIUrl":null,"url":null,"abstract":"A model-driven design and validation of closed-loop medical device systems is presented. Currently, few if any medical systems on the market support closed-loop control of interconnected medical devices, and mechanisms for regulatory approval of such systems are lacking. We present a system implementing a clinical scenario where closed-loop control may reduce the possibility of human error and improve safety of the patient. The safety of the system is studied with a simple controller proposed in the literature. We demonstrate that, under certain failure conditions, safety of the patient is not guaranteed. Finally, a more complex controller is described and ensures safety even when failures are possible. This investigation is an early attempt to introduce automatic control in clinical scenarios and to delineate a methodology to validate such patient-in-the-loop systems for safe and correct operation.","PeriodicalId":6619,"journal":{"name":"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)","volume":"4 1","pages":"139-148"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Toward patient safety in closed-loop medical device systems\",\"authors\":\"D. Arney, M. Pajic, J. Goldman, Insup Lee, R. Mangharam, O. Sokolsky\",\"doi\":\"10.1145/1795194.1795214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model-driven design and validation of closed-loop medical device systems is presented. Currently, few if any medical systems on the market support closed-loop control of interconnected medical devices, and mechanisms for regulatory approval of such systems are lacking. We present a system implementing a clinical scenario where closed-loop control may reduce the possibility of human error and improve safety of the patient. The safety of the system is studied with a simple controller proposed in the literature. We demonstrate that, under certain failure conditions, safety of the patient is not guaranteed. Finally, a more complex controller is described and ensures safety even when failures are possible. This investigation is an early attempt to introduce automatic control in clinical scenarios and to delineate a methodology to validate such patient-in-the-loop systems for safe and correct operation.\",\"PeriodicalId\":6619,\"journal\":{\"name\":\"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"4 1\",\"pages\":\"139-148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1795194.1795214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1795194.1795214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward patient safety in closed-loop medical device systems
A model-driven design and validation of closed-loop medical device systems is presented. Currently, few if any medical systems on the market support closed-loop control of interconnected medical devices, and mechanisms for regulatory approval of such systems are lacking. We present a system implementing a clinical scenario where closed-loop control may reduce the possibility of human error and improve safety of the patient. The safety of the system is studied with a simple controller proposed in the literature. We demonstrate that, under certain failure conditions, safety of the patient is not guaranteed. Finally, a more complex controller is described and ensures safety even when failures are possible. This investigation is an early attempt to introduce automatic control in clinical scenarios and to delineate a methodology to validate such patient-in-the-loop systems for safe and correct operation.