混凝土反应堆容器热粘弹性应力分析方法

R.L. Taylor
{"title":"混凝土反应堆容器热粘弹性应力分析方法","authors":"R.L. Taylor","doi":"10.1016/0369-5816(65)90018-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the analysis of problems in thermoviscoelasticity. The displacement equations of equilibrium governing the behavior of stressed, isotropic, thermorheologically simple materials subjected to thermal variations are formulated with respect to integral constitutive equations. This leads to a system of three, second order, variable coefficient, partial differential equations in the spatial coordinates and integral equations in the time. The general problem is formulated within the framework of classical, uncoupled thermoviscoelastic theory. A solution to the general displacement equations of equilibrium is presented for a point symmetric temperature field and point symmetric boundary conditions.</p><p>The general theory is also formulated from the principle of virtual displacements. From the principle of virtual displacements, it is shown how exact, as well as approximate, solutions may be obtained. An example is included for the solution to an incompressible hollow cylinder subjected to an axisymmetric temperature field.</p></div>","PeriodicalId":100973,"journal":{"name":"Nuclear Structural Engineering","volume":"1 4","pages":"Pages 385-394"},"PeriodicalIF":0.0000,"publicationDate":"1965-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0369-5816(65)90018-9","citationCount":"2","resultStr":"{\"title\":\"Method for thermoviscoelastic stress analysis in concrete reactor vessels\",\"authors\":\"R.L. Taylor\",\"doi\":\"10.1016/0369-5816(65)90018-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with the analysis of problems in thermoviscoelasticity. The displacement equations of equilibrium governing the behavior of stressed, isotropic, thermorheologically simple materials subjected to thermal variations are formulated with respect to integral constitutive equations. This leads to a system of three, second order, variable coefficient, partial differential equations in the spatial coordinates and integral equations in the time. The general problem is formulated within the framework of classical, uncoupled thermoviscoelastic theory. A solution to the general displacement equations of equilibrium is presented for a point symmetric temperature field and point symmetric boundary conditions.</p><p>The general theory is also formulated from the principle of virtual displacements. From the principle of virtual displacements, it is shown how exact, as well as approximate, solutions may be obtained. An example is included for the solution to an incompressible hollow cylinder subjected to an axisymmetric temperature field.</p></div>\",\"PeriodicalId\":100973,\"journal\":{\"name\":\"Nuclear Structural Engineering\",\"volume\":\"1 4\",\"pages\":\"Pages 385-394\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0369-5816(65)90018-9\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0369581665900189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0369581665900189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对热粘弹性中的一些问题进行了分析。控制应力、各向同性、热流变简单的材料在热变化下的行为的平衡位移方程是用积分本构方程来表示的。这导致了一个三次二阶变系数系统,空间坐标上的偏微分方程和时间坐标上的积分方程。一般问题是在经典的非耦合热粘弹性理论框架内提出的。给出了点对称温度场和点对称边界条件下的一般平衡位移方程的解。一般理论也由虚位移原理推导出来。从虚位移原理出发,可以得到精确的近似解。给出了在轴对称温度场作用下不可压缩空心圆柱体的解的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method for thermoviscoelastic stress analysis in concrete reactor vessels

This paper is concerned with the analysis of problems in thermoviscoelasticity. The displacement equations of equilibrium governing the behavior of stressed, isotropic, thermorheologically simple materials subjected to thermal variations are formulated with respect to integral constitutive equations. This leads to a system of three, second order, variable coefficient, partial differential equations in the spatial coordinates and integral equations in the time. The general problem is formulated within the framework of classical, uncoupled thermoviscoelastic theory. A solution to the general displacement equations of equilibrium is presented for a point symmetric temperature field and point symmetric boundary conditions.

The general theory is also formulated from the principle of virtual displacements. From the principle of virtual displacements, it is shown how exact, as well as approximate, solutions may be obtained. An example is included for the solution to an incompressible hollow cylinder subjected to an axisymmetric temperature field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信