传统神经网络在肺肿瘤诊断中的应用

Vijay L. Agrawal, Dr. Sanjay Vasant Dudul
{"title":"传统神经网络在肺肿瘤诊断中的应用","authors":"Vijay L. Agrawal, Dr. Sanjay Vasant Dudul","doi":"10.1109/ComPE49325.2020.9200118","DOIUrl":null,"url":null,"abstract":"The aim of this research is to develop an Optimal Classifier based on computational intelligence techniques for the precise diagnosis of deadly Lung Cancer disease. The proposed system provides maximum classification accuracy along with minimum number of connection weights, processing elements, time elapsed per epoch per exemplar and MSE on CV data sets. The Classifiers based on MLP, GFF, MNN Neural Networks and SVM with different learning rules on different transform domains such as DCT, FFT and WHT have been simulated on two different datasets. The optimized single hidden layer Multilayer Perceptron Neural Network with QP learning rule on Histogram knowledge-base for Data-base I and Data-base II resulted into the reasonable and optimal classifier based on C.I. techniques for the diagnosis of Lung Cancer.","PeriodicalId":6804,"journal":{"name":"2020 International Conference on Computational Performance Evaluation (ComPE)","volume":"34 1","pages":"543-547"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Conventional Neural Network approach for the Diagnosis of Lung Tumor\",\"authors\":\"Vijay L. Agrawal, Dr. Sanjay Vasant Dudul\",\"doi\":\"10.1109/ComPE49325.2020.9200118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this research is to develop an Optimal Classifier based on computational intelligence techniques for the precise diagnosis of deadly Lung Cancer disease. The proposed system provides maximum classification accuracy along with minimum number of connection weights, processing elements, time elapsed per epoch per exemplar and MSE on CV data sets. The Classifiers based on MLP, GFF, MNN Neural Networks and SVM with different learning rules on different transform domains such as DCT, FFT and WHT have been simulated on two different datasets. The optimized single hidden layer Multilayer Perceptron Neural Network with QP learning rule on Histogram knowledge-base for Data-base I and Data-base II resulted into the reasonable and optimal classifier based on C.I. techniques for the diagnosis of Lung Cancer.\",\"PeriodicalId\":6804,\"journal\":{\"name\":\"2020 International Conference on Computational Performance Evaluation (ComPE)\",\"volume\":\"34 1\",\"pages\":\"543-547\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Performance Evaluation (ComPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComPE49325.2020.9200118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE49325.2020.9200118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是开发一种基于计算智能技术的最佳分类器,用于致命肺癌疾病的精确诊断。该系统提供了最大的分类精度,以及最少的连接权重、处理元素、每个样本每个epoch所花费的时间和CV数据集的MSE。基于MLP、GFF、MNN神经网络和SVM的分类器在DCT、FFT和WHT等不同的变换域上具有不同的学习规则,并在两个不同的数据集上进行了仿真。对数据库I和数据库II的直方图知识库进行QP学习规则的单隐层多层感知器神经网络优化,得到了基于C.I.技术的肺癌诊断分类器的合理优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conventional Neural Network approach for the Diagnosis of Lung Tumor
The aim of this research is to develop an Optimal Classifier based on computational intelligence techniques for the precise diagnosis of deadly Lung Cancer disease. The proposed system provides maximum classification accuracy along with minimum number of connection weights, processing elements, time elapsed per epoch per exemplar and MSE on CV data sets. The Classifiers based on MLP, GFF, MNN Neural Networks and SVM with different learning rules on different transform domains such as DCT, FFT and WHT have been simulated on two different datasets. The optimized single hidden layer Multilayer Perceptron Neural Network with QP learning rule on Histogram knowledge-base for Data-base I and Data-base II resulted into the reasonable and optimal classifier based on C.I. techniques for the diagnosis of Lung Cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信