Cartan型限制李代数的齐次Borel子代数的一般性质和共轭类(I): W型

IF 0.1 Q4 MATHEMATICS
B. Shu
{"title":"Cartan型限制李代数的齐次Borel子代数的一般性质和共轭类(I): W型","authors":"B. Shu","doi":"10.21915/bimas.2019302","DOIUrl":null,"url":null,"abstract":"Let $(\\mathfrak{g},[p])$ be a finite-dimensional restricted Lie algebra over an algebraically closed field $\\mathbb{K}$ of characteristic $p>0$, and $G$ be the adjoint group of $\\mathfrak{g}$. We say that $\\mathfrak{g}$ satisfying the {\\sl generic property} if $\\mathfrak{g}$ admits generic tori introduced in \\cite{BFS}. A Borel subalgebra (or Borel for short) of $\\mathfrak{g}$ is by definition a maximal solvable subalgebra containing a maximal torus of $\\mathfrak{g}$, which is further called generic if additionally containing a generic torus. In this paper, we first settle a conjecture proposed by Premet in \\cite{Pr2} on regular Cartan subalgebras of restricted Lie algebras. We prove that the statement in the conjecture for a given $\\mathfrak{g}$ is valid if and only if it is the case when $\\mathfrak{g}$ satisfies the generic property. We then classify the conjugay classes of homogeneous Borel subalgebras of the restricted simple Lie algebras $\\mathfrak{g}=W(n)$ under $G$-conjugation when $p>3$, and present the representatives of these classes. Here $W(n)$ is the so-called Jacobson-Witt algebra, by definition the derivation algebra of the truncated polynomial ring $\\mathbb{K}[T_1,\\cdots,T_n]\\slash (T_1^p,\\cdots,T_n^p)$. We also describe the closed connected solvable subgroups of $G$ associated with those representative Borel subalgebras.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"23 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2014-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generic Property and Conjugacy Classes of Homogeneous Borel Subalgebras of Restricted Lie Algebras of Cartan Type (I): Type W\",\"authors\":\"B. Shu\",\"doi\":\"10.21915/bimas.2019302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(\\\\mathfrak{g},[p])$ be a finite-dimensional restricted Lie algebra over an algebraically closed field $\\\\mathbb{K}$ of characteristic $p>0$, and $G$ be the adjoint group of $\\\\mathfrak{g}$. We say that $\\\\mathfrak{g}$ satisfying the {\\\\sl generic property} if $\\\\mathfrak{g}$ admits generic tori introduced in \\\\cite{BFS}. A Borel subalgebra (or Borel for short) of $\\\\mathfrak{g}$ is by definition a maximal solvable subalgebra containing a maximal torus of $\\\\mathfrak{g}$, which is further called generic if additionally containing a generic torus. In this paper, we first settle a conjecture proposed by Premet in \\\\cite{Pr2} on regular Cartan subalgebras of restricted Lie algebras. We prove that the statement in the conjecture for a given $\\\\mathfrak{g}$ is valid if and only if it is the case when $\\\\mathfrak{g}$ satisfies the generic property. We then classify the conjugay classes of homogeneous Borel subalgebras of the restricted simple Lie algebras $\\\\mathfrak{g}=W(n)$ under $G$-conjugation when $p>3$, and present the representatives of these classes. Here $W(n)$ is the so-called Jacobson-Witt algebra, by definition the derivation algebra of the truncated polynomial ring $\\\\mathbb{K}[T_1,\\\\cdots,T_n]\\\\slash (T_1^p,\\\\cdots,T_n^p)$. We also describe the closed connected solvable subgroups of $G$ associated with those representative Borel subalgebras.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2019302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2019302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$(\mathfrak{g},[p])$为特征为$p>0$的代数闭域$\mathbb{K}$上的有限维受限李代数,$G$为$\mathfrak{g}$的伴随群。如果$\mathfrak{g}$允许在{\sl}\cite{BFS}中引入的泛型环面,我们说$\mathfrak{g}$满足泛型。根据定义,$\mathfrak{g}$的Borel子代数(或简称Borel)是包含最大环面$\mathfrak{g}$的最大可解子代数,如果另外包含一个泛型环面,则进一步称为泛型。本文首先证明了Premet在\cite{Pr2}中关于限制李代数的正则Cartan子代数的一个猜想。我们证明了对于给定的$\mathfrak{g}$,当且仅当$\mathfrak{g}$满足一般性质时,猜想中的陈述是有效的。然后在$G$ -共轭条件下,对限制简单李代数$\mathfrak{g}=W(n)$的齐次Borel子代数在$p>3$下的共轭类进行了分类,并给出了这些类的代表。这里$W(n)$是所谓的Jacobson-Witt代数,根据定义是截断多项式环的推导代数$\mathbb{K}[T_1,\cdots,T_n]\slash (T_1^p,\cdots,T_n^p)$。我们还描述了与这些代表性Borel子代数相关的$G$的闭连通可解子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic Property and Conjugacy Classes of Homogeneous Borel Subalgebras of Restricted Lie Algebras of Cartan Type (I): Type W
Let $(\mathfrak{g},[p])$ be a finite-dimensional restricted Lie algebra over an algebraically closed field $\mathbb{K}$ of characteristic $p>0$, and $G$ be the adjoint group of $\mathfrak{g}$. We say that $\mathfrak{g}$ satisfying the {\sl generic property} if $\mathfrak{g}$ admits generic tori introduced in \cite{BFS}. A Borel subalgebra (or Borel for short) of $\mathfrak{g}$ is by definition a maximal solvable subalgebra containing a maximal torus of $\mathfrak{g}$, which is further called generic if additionally containing a generic torus. In this paper, we first settle a conjecture proposed by Premet in \cite{Pr2} on regular Cartan subalgebras of restricted Lie algebras. We prove that the statement in the conjecture for a given $\mathfrak{g}$ is valid if and only if it is the case when $\mathfrak{g}$ satisfies the generic property. We then classify the conjugay classes of homogeneous Borel subalgebras of the restricted simple Lie algebras $\mathfrak{g}=W(n)$ under $G$-conjugation when $p>3$, and present the representatives of these classes. Here $W(n)$ is the so-called Jacobson-Witt algebra, by definition the derivation algebra of the truncated polynomial ring $\mathbb{K}[T_1,\cdots,T_n]\slash (T_1^p,\cdots,T_n^p)$. We also describe the closed connected solvable subgroups of $G$ associated with those representative Borel subalgebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信