随机环境和永续中的线性分数阶高尔顿-沃森过程

Q3 Mathematics
G. Alsmeyer
{"title":"随机环境和永续中的线性分数阶高尔顿-沃森过程","authors":"G. Alsmeyer","doi":"10.1515/eqc-2021-0037","DOIUrl":null,"url":null,"abstract":"Abstract Linear fractional Galton–Watson branching processes in i.i.d. random environment are, on the quenched level, intimately connected to random difference equations by the evolution of the random parameters of their linear fractional marginals. On the other hand, any random difference equation defines an autoregressive Markov chain (a random affine recursion) which can be positive recurrent, null recurrent and transient and which, as the forward iterations of an iterated function system, has an a.s. convergent counterpart in the positive recurrent case given by the corresponding backward iterations. The present expository article aims to provide an explicit view at how these aspects of random difference equations and their stationary limits, called perpetuities, enter into the results and the analysis, especially in quenched regime. Although most of the results presented here are known, we hope that the offered perspective will be welcomed by some readers.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"77 1","pages":"111 - 127"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Linear Fractional Galton–Watson Processes in Random Environment and Perpetuities\",\"authors\":\"G. Alsmeyer\",\"doi\":\"10.1515/eqc-2021-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Linear fractional Galton–Watson branching processes in i.i.d. random environment are, on the quenched level, intimately connected to random difference equations by the evolution of the random parameters of their linear fractional marginals. On the other hand, any random difference equation defines an autoregressive Markov chain (a random affine recursion) which can be positive recurrent, null recurrent and transient and which, as the forward iterations of an iterated function system, has an a.s. convergent counterpart in the positive recurrent case given by the corresponding backward iterations. The present expository article aims to provide an explicit view at how these aspects of random difference equations and their stationary limits, called perpetuities, enter into the results and the analysis, especially in quenched regime. Although most of the results presented here are known, we hope that the offered perspective will be welcomed by some readers.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"77 1\",\"pages\":\"111 - 127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2021-0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2021-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

随机环境下的线性分数阶Galton-Watson分支过程,通过其线性分数阶边缘的随机参数的演化,在淬冷水平上与随机差分方程密切相关。另一方面,任意随机差分方程定义了一个自回归马尔可夫链(随机仿射递推),它可以是正递推、零递推和瞬态的,并且作为迭代函数系统的正向迭代,在相应的向后迭代给出的正递推情况下有一个as收敛的对应。本说明性文章旨在提供一个明确的观点,如何随机差分方程的这些方面和它们的平稳极限,称为永续性,进入结果和分析,特别是在淬火状态。虽然这里展示的大多数结果都是已知的,但我们希望所提供的观点会受到一些读者的欢迎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Fractional Galton–Watson Processes in Random Environment and Perpetuities
Abstract Linear fractional Galton–Watson branching processes in i.i.d. random environment are, on the quenched level, intimately connected to random difference equations by the evolution of the random parameters of their linear fractional marginals. On the other hand, any random difference equation defines an autoregressive Markov chain (a random affine recursion) which can be positive recurrent, null recurrent and transient and which, as the forward iterations of an iterated function system, has an a.s. convergent counterpart in the positive recurrent case given by the corresponding backward iterations. The present expository article aims to provide an explicit view at how these aspects of random difference equations and their stationary limits, called perpetuities, enter into the results and the analysis, especially in quenched regime. Although most of the results presented here are known, we hope that the offered perspective will be welcomed by some readers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信