热传导问题的有限元正交配置数值解

Shelly Arora , Inderpreet Kaur
{"title":"热传导问题的有限元正交配置数值解","authors":"Shelly Arora ,&nbsp;Inderpreet Kaur","doi":"10.1016/j.jnnms.2015.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Technique of orthogonal collocation along with finite elements has been presented to solve the linear and non linear heat conduction problems numerically. Choice of Lagrangian interpolation polynomials as base function has been opted to discretize the trial function. Error analysis has been discussed in terms of element size for both the linear and non linear problems. Proposed technique has been applied on different types of linear and non linear heat conduction problems and the numerical values are plotted using 2D and 3D graphs.</p></div>","PeriodicalId":17275,"journal":{"name":"Journal of the Nigerian Mathematical Society","volume":"34 3","pages":"Pages 286-302"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jnnms.2015.10.001","citationCount":"6","resultStr":"{\"title\":\"Numerical solution of heat conduction problems using orthogonal collocation on finite elements\",\"authors\":\"Shelly Arora ,&nbsp;Inderpreet Kaur\",\"doi\":\"10.1016/j.jnnms.2015.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Technique of orthogonal collocation along with finite elements has been presented to solve the linear and non linear heat conduction problems numerically. Choice of Lagrangian interpolation polynomials as base function has been opted to discretize the trial function. Error analysis has been discussed in terms of element size for both the linear and non linear problems. Proposed technique has been applied on different types of linear and non linear heat conduction problems and the numerical values are plotted using 2D and 3D graphs.</p></div>\",\"PeriodicalId\":17275,\"journal\":{\"name\":\"Journal of the Nigerian Mathematical Society\",\"volume\":\"34 3\",\"pages\":\"Pages 286-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jnnms.2015.10.001\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0189896515000542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0189896515000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

采用正交配置法结合有限元法对线性和非线性热传导问题进行了数值求解。选择拉格朗日插值多项式作为基函数,使试验函数离散化。讨论了线性和非线性问题中单元尺寸的误差分析。该方法已应用于不同类型的线性和非线性热传导问题,并利用二维和三维图形绘制了数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of heat conduction problems using orthogonal collocation on finite elements

Technique of orthogonal collocation along with finite elements has been presented to solve the linear and non linear heat conduction problems numerically. Choice of Lagrangian interpolation polynomials as base function has been opted to discretize the trial function. Error analysis has been discussed in terms of element size for both the linear and non linear problems. Proposed technique has been applied on different types of linear and non linear heat conduction problems and the numerical values are plotted using 2D and 3D graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信