结合密集与稀疏视觉线索的基于实时模型的刚体姿态估计与跟踪

Karl Pauwels, Leonardo Rubio, Javier Díaz, E. Ros
{"title":"结合密集与稀疏视觉线索的基于实时模型的刚体姿态估计与跟踪","authors":"Karl Pauwels, Leonardo Rubio, Javier Díaz, E. Ros","doi":"10.1109/CVPR.2013.304","DOIUrl":null,"url":null,"abstract":"We propose a novel model-based method for estimating and tracking the six-degrees-of-freedom (6DOF) pose of rigid objects of arbitrary shapes in real-time. By combining dense motion and stereo cues with sparse key point correspondences, and by feeding back information from the model to the cue extraction level, the method is both highly accurate and robust to noise and occlusions. A tight integration of the graphical and computational capability of Graphics Processing Units (GPUs) results in pose updates at frame rates exceeding 60 Hz. Since a benchmark dataset that enables the evaluation of stereo-vision-based pose estimators in complex scenarios is currently missing in the literature, we have introduced a novel synthetic benchmark dataset with varying objects, background motion, noise and occlusions. Using this dataset and a novel evaluation methodology, we show that the proposed method greatly outperforms state-of-the-art methods. Finally, we demonstrate excellent performance on challenging real-world sequences involving object manipulation.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"23 1","pages":"2347-2354"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Real-Time Model-Based Rigid Object Pose Estimation and Tracking Combining Dense and Sparse Visual Cues\",\"authors\":\"Karl Pauwels, Leonardo Rubio, Javier Díaz, E. Ros\",\"doi\":\"10.1109/CVPR.2013.304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel model-based method for estimating and tracking the six-degrees-of-freedom (6DOF) pose of rigid objects of arbitrary shapes in real-time. By combining dense motion and stereo cues with sparse key point correspondences, and by feeding back information from the model to the cue extraction level, the method is both highly accurate and robust to noise and occlusions. A tight integration of the graphical and computational capability of Graphics Processing Units (GPUs) results in pose updates at frame rates exceeding 60 Hz. Since a benchmark dataset that enables the evaluation of stereo-vision-based pose estimators in complex scenarios is currently missing in the literature, we have introduced a novel synthetic benchmark dataset with varying objects, background motion, noise and occlusions. Using this dataset and a novel evaluation methodology, we show that the proposed method greatly outperforms state-of-the-art methods. Finally, we demonstrate excellent performance on challenging real-world sequences involving object manipulation.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"23 1\",\"pages\":\"2347-2354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

提出了一种新的基于模型的任意形状刚体六自由度(6DOF)姿态实时估计和跟踪方法。该方法将密集运动和立体线索与稀疏的关键点对应相结合,并将模型信息反馈到线索提取层,具有较高的准确性和对噪声和遮挡的鲁棒性。图形处理单元(gpu)的图形和计算能力的紧密集成导致帧率超过60hz的姿态更新。由于目前文献中缺乏能够在复杂场景中评估基于立体视觉的姿态估计器的基准数据集,因此我们引入了一个具有不同对象、背景运动、噪声和遮挡的新型合成基准数据集。使用该数据集和一种新的评估方法,我们表明所提出的方法大大优于最先进的方法。最后,我们在涉及对象操作的具有挑战性的现实世界序列上展示了出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Model-Based Rigid Object Pose Estimation and Tracking Combining Dense and Sparse Visual Cues
We propose a novel model-based method for estimating and tracking the six-degrees-of-freedom (6DOF) pose of rigid objects of arbitrary shapes in real-time. By combining dense motion and stereo cues with sparse key point correspondences, and by feeding back information from the model to the cue extraction level, the method is both highly accurate and robust to noise and occlusions. A tight integration of the graphical and computational capability of Graphics Processing Units (GPUs) results in pose updates at frame rates exceeding 60 Hz. Since a benchmark dataset that enables the evaluation of stereo-vision-based pose estimators in complex scenarios is currently missing in the literature, we have introduced a novel synthetic benchmark dataset with varying objects, background motion, noise and occlusions. Using this dataset and a novel evaluation methodology, we show that the proposed method greatly outperforms state-of-the-art methods. Finally, we demonstrate excellent performance on challenging real-world sequences involving object manipulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信