生物柴油(甲酯)

Nurul Aina Nasriqah Binti Ma’arof, Noor Hindryawati, Siti Norhafiza Mohd Khazaai, Prakash Bhuyar, Mohd Hasbi Ab. Rahim, Gaanty Pragas Maniam
{"title":"生物柴油(甲酯)","authors":"Nurul Aina Nasriqah Binti Ma’arof, Noor Hindryawati, Siti Norhafiza Mohd Khazaai, Prakash Bhuyar, Mohd Hasbi Ab. Rahim, Gaanty Pragas Maniam","doi":"10.54279/mijeec.v3i1.245153","DOIUrl":null,"url":null,"abstract":"Biodiesel, an environmentally friendly biomass-based fuel, is gaining popularity globally as a cost-effective way to meet rising fuel demand. However, the high cost of raw materials and catalysts continues to drive up biodiesel production. An alternative feedstock with a heterogeneously catalyzed reaction could be the most cost-effective way to stabilize industrial biodiesel growth. Understanding these issues led to the idea of using waste palm oil as a feedstock for biodiesel production. While using waste materials as feedstock for biodiesel is an elegant solution, converting high free fatty acids (FFA) directly into methyl esters has some drawbacks. High FFA processes (acid esterification, then base transesterification) are costly. The commercial processes currently use a homogeneous system with sulfuric acid to catalyze both esterification and transesterification. However, heterogeneous solid acid catalysts are preferred over hazardous mineral acids for high FFA esterification because they are less corrosive, produce less waste, and are easier to separate from reactants and products by filtration, recovery, and reusability. Heterogeneous acid catalysts can also simultaneously catalyze transesterification and esterification reactions. Thus, new waste-based support for heterogeneous catalysts (solid acid catalysts) is required to convert waste oils into biodiesel.","PeriodicalId":18176,"journal":{"name":"Maejo International Journal of Energy and Environmental Communication","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Biodiesel (Methyl Esters)\",\"authors\":\"Nurul Aina Nasriqah Binti Ma’arof, Noor Hindryawati, Siti Norhafiza Mohd Khazaai, Prakash Bhuyar, Mohd Hasbi Ab. Rahim, Gaanty Pragas Maniam\",\"doi\":\"10.54279/mijeec.v3i1.245153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodiesel, an environmentally friendly biomass-based fuel, is gaining popularity globally as a cost-effective way to meet rising fuel demand. However, the high cost of raw materials and catalysts continues to drive up biodiesel production. An alternative feedstock with a heterogeneously catalyzed reaction could be the most cost-effective way to stabilize industrial biodiesel growth. Understanding these issues led to the idea of using waste palm oil as a feedstock for biodiesel production. While using waste materials as feedstock for biodiesel is an elegant solution, converting high free fatty acids (FFA) directly into methyl esters has some drawbacks. High FFA processes (acid esterification, then base transesterification) are costly. The commercial processes currently use a homogeneous system with sulfuric acid to catalyze both esterification and transesterification. However, heterogeneous solid acid catalysts are preferred over hazardous mineral acids for high FFA esterification because they are less corrosive, produce less waste, and are easier to separate from reactants and products by filtration, recovery, and reusability. Heterogeneous acid catalysts can also simultaneously catalyze transesterification and esterification reactions. Thus, new waste-based support for heterogeneous catalysts (solid acid catalysts) is required to convert waste oils into biodiesel.\",\"PeriodicalId\":18176,\"journal\":{\"name\":\"Maejo International Journal of Energy and Environmental Communication\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maejo International Journal of Energy and Environmental Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54279/mijeec.v3i1.245153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maejo International Journal of Energy and Environmental Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54279/mijeec.v3i1.245153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

生物柴油是一种环境友好的生物质燃料,作为满足日益增长的燃料需求的一种经济有效的方式,在全球越来越受欢迎。然而,原材料和催化剂的高成本继续推动生物柴油的生产。一种具有非均相催化反应的替代原料可能是稳定工业生物柴油生长的最具成本效益的方法。了解了这些问题,就产生了使用废棕榈油作为生物柴油生产原料的想法。虽然使用废物作为生物柴油的原料是一种优雅的解决方案,但将高游离脂肪酸(FFA)直接转化为甲酯有一些缺点。高FFA过程(酸酯化,然后碱酯交换)是昂贵的。目前的商业方法是使用一种含有硫酸的均相体系来催化酯化和酯交换反应。然而,对于高FFA酯化,非均相固体酸催化剂比危险矿物酸更受青睐,因为它们腐蚀性更小,产生的废物更少,并且更容易通过过滤、回收和再利用从反应物和产物中分离出来。多相酸催化剂还可以同时催化酯交换和酯化反应。因此,需要新的基于废物的多相催化剂(固体酸催化剂)来将废油转化为生物柴油。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biodiesel (Methyl Esters)
Biodiesel, an environmentally friendly biomass-based fuel, is gaining popularity globally as a cost-effective way to meet rising fuel demand. However, the high cost of raw materials and catalysts continues to drive up biodiesel production. An alternative feedstock with a heterogeneously catalyzed reaction could be the most cost-effective way to stabilize industrial biodiesel growth. Understanding these issues led to the idea of using waste palm oil as a feedstock for biodiesel production. While using waste materials as feedstock for biodiesel is an elegant solution, converting high free fatty acids (FFA) directly into methyl esters has some drawbacks. High FFA processes (acid esterification, then base transesterification) are costly. The commercial processes currently use a homogeneous system with sulfuric acid to catalyze both esterification and transesterification. However, heterogeneous solid acid catalysts are preferred over hazardous mineral acids for high FFA esterification because they are less corrosive, produce less waste, and are easier to separate from reactants and products by filtration, recovery, and reusability. Heterogeneous acid catalysts can also simultaneously catalyze transesterification and esterification reactions. Thus, new waste-based support for heterogeneous catalysts (solid acid catalysts) is required to convert waste oils into biodiesel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信