{"title":"间歇微波真空浓缩对苹果汁和酸樱桃蜜品质参数的影响及浓缩数学建模","authors":"Cuneyt Dincer","doi":"10.1080/08327823.2021.1952837","DOIUrl":null,"url":null,"abstract":"Abstract In this study, sour cherry nectar and apple juice were concentrated using thermal concentration (75, 80, and 85 °C), and intermittent microwave concentration (180, 300, and 450 W) under vacuum condition (at 250 mbar). Thirteen different mathematical models were used to describe the concentration kinetics of the samples. The Midilli model exhibited the best fit to all experimental data (R2 ≥ 0.9972; χ2 ≤ 1.6724; RMSE ≤ 1.2932). The concentration time was reduced with increasing microwave power (from 180 W to 450 W) and thermal vacuum concentration temperature (from 75 °C to 85 °C). In addition, the main quality parameters of the concentrates were comparatively investigated after reconstitution. Generally, major differences were not observed in the physicochemical properties of samples concentrated by thermal and microwave methods. Total phenolic content of the apple juice and sour cherry nectar samples were ranged between 209.87-216.67 mg/L and 571.00-588.57 mg/L, respectively. Fructose was the main sugar in both juices, followed by glucose and sucrose. The particle size of the juice samples increased with concentration processing.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"1 1","pages":"175 - 196"},"PeriodicalIF":0.9000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of intermittent microwave vacuum concentration on quality parameters of apple juice and sour cherry nectar and mathematical modeling of concentration\",\"authors\":\"Cuneyt Dincer\",\"doi\":\"10.1080/08327823.2021.1952837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, sour cherry nectar and apple juice were concentrated using thermal concentration (75, 80, and 85 °C), and intermittent microwave concentration (180, 300, and 450 W) under vacuum condition (at 250 mbar). Thirteen different mathematical models were used to describe the concentration kinetics of the samples. The Midilli model exhibited the best fit to all experimental data (R2 ≥ 0.9972; χ2 ≤ 1.6724; RMSE ≤ 1.2932). The concentration time was reduced with increasing microwave power (from 180 W to 450 W) and thermal vacuum concentration temperature (from 75 °C to 85 °C). In addition, the main quality parameters of the concentrates were comparatively investigated after reconstitution. Generally, major differences were not observed in the physicochemical properties of samples concentrated by thermal and microwave methods. Total phenolic content of the apple juice and sour cherry nectar samples were ranged between 209.87-216.67 mg/L and 571.00-588.57 mg/L, respectively. Fructose was the main sugar in both juices, followed by glucose and sucrose. The particle size of the juice samples increased with concentration processing.\",\"PeriodicalId\":16556,\"journal\":{\"name\":\"Journal of Microwave Power and Electromagnetic Energy\",\"volume\":\"1 1\",\"pages\":\"175 - 196\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microwave Power and Electromagnetic Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/08327823.2021.1952837\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2021.1952837","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effect of intermittent microwave vacuum concentration on quality parameters of apple juice and sour cherry nectar and mathematical modeling of concentration
Abstract In this study, sour cherry nectar and apple juice were concentrated using thermal concentration (75, 80, and 85 °C), and intermittent microwave concentration (180, 300, and 450 W) under vacuum condition (at 250 mbar). Thirteen different mathematical models were used to describe the concentration kinetics of the samples. The Midilli model exhibited the best fit to all experimental data (R2 ≥ 0.9972; χ2 ≤ 1.6724; RMSE ≤ 1.2932). The concentration time was reduced with increasing microwave power (from 180 W to 450 W) and thermal vacuum concentration temperature (from 75 °C to 85 °C). In addition, the main quality parameters of the concentrates were comparatively investigated after reconstitution. Generally, major differences were not observed in the physicochemical properties of samples concentrated by thermal and microwave methods. Total phenolic content of the apple juice and sour cherry nectar samples were ranged between 209.87-216.67 mg/L and 571.00-588.57 mg/L, respectively. Fructose was the main sugar in both juices, followed by glucose and sucrose. The particle size of the juice samples increased with concentration processing.
期刊介绍:
The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.