{"title":"摄动三次z4等变平面哈密顿系统的阿贝尔积分零点数的估计","authors":"Aiyong Chen, Wentao Huang, Yonghui Xia, Huiyang Zhang","doi":"10.1142/S0218127423500852","DOIUrl":null,"url":null,"abstract":"We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the Number of Zeros of Abelian Integrals for the Perturbed Cubic Z4-Equivariant Planar Hamiltonian System\",\"authors\":\"Aiyong Chen, Wentao Huang, Yonghui Xia, Huiyang Zhang\",\"doi\":\"10.1142/S0218127423500852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218127423500852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218127423500852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimating the Number of Zeros of Abelian Integrals for the Perturbed Cubic Z4-Equivariant Planar Hamiltonian System
We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).