摄动三次z4等变平面哈密顿系统的阿贝尔积分零点数的估计

Aiyong Chen, Wentao Huang, Yonghui Xia, Huiyang Zhang
{"title":"摄动三次z4等变平面哈密顿系统的阿贝尔积分零点数的估计","authors":"Aiyong Chen, Wentao Huang, Yonghui Xia, Huiyang Zhang","doi":"10.1142/S0218127423500852","DOIUrl":null,"url":null,"abstract":"We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"1 1","pages":"2350085:1-2350085:21"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the Number of Zeros of Abelian Integrals for the Perturbed Cubic Z4-Equivariant Planar Hamiltonian System\",\"authors\":\"Aiyong Chen, Wentao Huang, Yonghui Xia, Huiyang Zhang\",\"doi\":\"10.1142/S0218127423500852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":\"1 1\",\"pages\":\"2350085:1-2350085:21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218127423500852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218127423500852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了一类[公式:见文]——形式为[公式:见文]的等变哈密顿系统的动力学,其中[公式:见文]是复数,时间[公式:见文]是实数,[公式:见文]和[公式:见文]是实参数。给出了具有至少一个中心的拓扑相图。得到了阿贝尔积分[公式:见文]的有限生成函数,其中[公式:见文]是由[公式:见文][公式:见文]定义的闭椭圆族,[公式:见文]是定义[公式:见文]的开区间,[公式:见文],[公式:见文]是[公式:见文]和[公式:见文]中带次的实多项式[公式:见文]。利用阿贝尔积分的代数结构,给出了相应阿贝尔积分的孤立零个数的估计。在[公式:见文][公式:见文]和[公式:见文]中的给定多项式[公式:见文]和[公式:见文],摄动[公式:见文]-等变哈密顿系统的极限环数不超过[公式:见文](考虑多重性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the Number of Zeros of Abelian Integrals for the Perturbed Cubic Z4-Equivariant Planar Hamiltonian System
We analyze the dynamics of a class of [Formula: see text]-equivariant Hamiltonian systems of the form [Formula: see text], where [Formula: see text] is complex, the time [Formula: see text] is real, while [Formula: see text] and [Formula: see text] are real parameters. The topological phase portraits with at least one center are given. The finite generators of Abelian integral [Formula: see text] are obtained, where [Formula: see text] is a family of closed ovals defined by [Formula: see text] [Formula: see text], [Formula: see text] is the open interval on which [Formula: see text] is defined, [Formula: see text], [Formula: see text] are real polynomials in [Formula: see text] and [Formula: see text] with degree [Formula: see text]. We give an estimation of the number of isolated zeros of the corresponding Abelian integral by using its algebraic structure. We show that for the given polynomials [Formula: see text] and [Formula: see text] in [Formula: see text] and [Formula: see text] with degree [Formula: see text], the number of the limit cycles of the perturbed [Formula: see text]-equivariant Hamiltonian system does not exceed [Formula: see text] (taking into account the multiplicity).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信