实时人脸视频交换从一个单一的肖像

Luming Ma, Z. Deng
{"title":"实时人脸视频交换从一个单一的肖像","authors":"Luming Ma, Z. Deng","doi":"10.1145/3384382.3384519","DOIUrl":null,"url":null,"abstract":"We present a novel high-fidelity real-time method to replace the face in a target video clip by the face from a single source portrait image. Specifically, we first reconstruct the illumination, albedo, camera parameters, and wrinkle-level geometric details from both the source image and the target video. Then, the albedo of the source face is modified by a novel harmonization method to match the target face. Finally, the source face is re-rendered and blended into the target video using the lighting and camera parameters from the target video. Our method runs fully automatically and at real-time rate on any target face captured by cameras or from legacy video. More importantly, unlike existing deep learning based methods, our method does not need to pre-train any models, i.e., pre-collecting a large image/video dataset of the source or target face for model training is not needed. We demonstrate that a high level of video-realism can be achieved by our method on a variety of human faces with different identities, ethnicities, skin colors, and expressions.","PeriodicalId":91160,"journal":{"name":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-time Face Video Swapping From A Single Portrait\",\"authors\":\"Luming Ma, Z. Deng\",\"doi\":\"10.1145/3384382.3384519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel high-fidelity real-time method to replace the face in a target video clip by the face from a single source portrait image. Specifically, we first reconstruct the illumination, albedo, camera parameters, and wrinkle-level geometric details from both the source image and the target video. Then, the albedo of the source face is modified by a novel harmonization method to match the target face. Finally, the source face is re-rendered and blended into the target video using the lighting and camera parameters from the target video. Our method runs fully automatically and at real-time rate on any target face captured by cameras or from legacy video. More importantly, unlike existing deep learning based methods, our method does not need to pre-train any models, i.e., pre-collecting a large image/video dataset of the source or target face for model training is not needed. We demonstrate that a high level of video-realism can be achieved by our method on a variety of human faces with different identities, ethnicities, skin colors, and expressions.\",\"PeriodicalId\":91160,\"journal\":{\"name\":\"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3384382.3384519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384382.3384519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种新颖的高保真实时方法,将目标视频片段中的人脸替换为单源人像图像中的人脸。具体来说,我们首先从源图像和目标视频中重建照明、反照率、相机参数和皱纹级几何细节。然后,采用一种新的调和方法对源面反照率进行修正,使其与目标面相匹配。最后,源面被重新渲染,并使用目标视频中的照明和相机参数混合到目标视频中。我们的方法完全自动运行,并在任何目标面部实时速率由摄像机或从遗留视频捕获。更重要的是,与现有的基于深度学习的方法不同,我们的方法不需要预训练任何模型,即不需要预先收集源或目标面部的大型图像/视频数据集进行模型训练。我们证明,通过我们的方法,可以在具有不同身份、种族、肤色和表情的各种人脸上实现高水平的视频真实感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Face Video Swapping From A Single Portrait
We present a novel high-fidelity real-time method to replace the face in a target video clip by the face from a single source portrait image. Specifically, we first reconstruct the illumination, albedo, camera parameters, and wrinkle-level geometric details from both the source image and the target video. Then, the albedo of the source face is modified by a novel harmonization method to match the target face. Finally, the source face is re-rendered and blended into the target video using the lighting and camera parameters from the target video. Our method runs fully automatically and at real-time rate on any target face captured by cameras or from legacy video. More importantly, unlike existing deep learning based methods, our method does not need to pre-train any models, i.e., pre-collecting a large image/video dataset of the source or target face for model training is not needed. We demonstrate that a high level of video-realism can be achieved by our method on a variety of human faces with different identities, ethnicities, skin colors, and expressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信