{"title":"一类极多项式的渐近零分布","authors":"A. D. Gonzalez, G. Lagomasino, H. P. Cabrera","doi":"10.1142/S166436071950019X","DOIUrl":null,"url":null,"abstract":"We consider extremal polynomials with respect to a Sobolev-type [Formula: see text]-norm, with [Formula: see text] and measures supported on compact subsets of the real line. For a wide class of such extremal polynomials with respect to mutually singular measures (i.e. supported on disjoint subsets of the real line), it is proved that their critical points are simple and contained in the interior of the convex hull of the support of the measures involved and the asymptotic critical point distribution is studied. We also find the [Formula: see text]th root asymptotic behavior of the corresponding sequence of Sobolev extremal polynomials and their derivatives.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Asymptotic zero distribution for a class of extremal polynomials\",\"authors\":\"A. D. Gonzalez, G. Lagomasino, H. P. Cabrera\",\"doi\":\"10.1142/S166436071950019X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider extremal polynomials with respect to a Sobolev-type [Formula: see text]-norm, with [Formula: see text] and measures supported on compact subsets of the real line. For a wide class of such extremal polynomials with respect to mutually singular measures (i.e. supported on disjoint subsets of the real line), it is proved that their critical points are simple and contained in the interior of the convex hull of the support of the measures involved and the asymptotic critical point distribution is studied. We also find the [Formula: see text]th root asymptotic behavior of the corresponding sequence of Sobolev extremal polynomials and their derivatives.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S166436071950019X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S166436071950019X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymptotic zero distribution for a class of extremal polynomials
We consider extremal polynomials with respect to a Sobolev-type [Formula: see text]-norm, with [Formula: see text] and measures supported on compact subsets of the real line. For a wide class of such extremal polynomials with respect to mutually singular measures (i.e. supported on disjoint subsets of the real line), it is proved that their critical points are simple and contained in the interior of the convex hull of the support of the measures involved and the asymptotic critical point distribution is studied. We also find the [Formula: see text]th root asymptotic behavior of the corresponding sequence of Sobolev extremal polynomials and their derivatives.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.