饱和拓扑空间中的闭补边问题

Q4 Mathematics
Sara Canilang, Michael P. Cohen, Nicolas Graese, Ian Seong
{"title":"饱和拓扑空间中的闭补边问题","authors":"Sara Canilang, Michael P. Cohen, Nicolas Graese, Ian Seong","doi":"10.53733/151","DOIUrl":null,"url":null,"abstract":"Let $X$ be a space equipped with $n$ topologies $\\tau_1,\\ldots,\\tau_n$ which are pairwise comparable and saturated, and for each $1\\leq i\\leq n$ let $k_i$ and $f_i$ be the associated topological closure and frontier operators, respectively. Inspired by the closure-complement theorem of Kuratowski, we prove that the monoid of set operators $\\mathcal{KF}_n$ generated by $\\{k_i,f_i:1\\leq i\\leq n\\}\\cup\\{c\\}$ (where $c$ denotes the set complement operator) has cardinality no more than $2p(n)$ where $p(n)=\\frac{5}{24}n^4+\\frac{37}{12}n^3+\\frac{79}{24}n^2+\\frac{101}{12}n+2$. The bound is sharp in the following sense: for each $n$ there exists a saturated polytopological space $(X,\\tau_1,...,\\tau_n)$ and a subset $A\\subseteq X$ such that repeated application of the operators $k_i, f_i, c$ to $A$ will yield exactly $2p(n)$ distinct sets. In particular, following the tradition for Kuratowski-type problems, we exhibit an explicit initial set in $\\mathbb{R}$, equipped with the usual and Sorgenfrey topologies, which yields $2p(2)=120$ distinct sets under the action of the monoid $\\mathcal{KF}_2$.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"closure-complement-frontier problem in saturated polytopological spaces\",\"authors\":\"Sara Canilang, Michael P. Cohen, Nicolas Graese, Ian Seong\",\"doi\":\"10.53733/151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a space equipped with $n$ topologies $\\\\tau_1,\\\\ldots,\\\\tau_n$ which are pairwise comparable and saturated, and for each $1\\\\leq i\\\\leq n$ let $k_i$ and $f_i$ be the associated topological closure and frontier operators, respectively. Inspired by the closure-complement theorem of Kuratowski, we prove that the monoid of set operators $\\\\mathcal{KF}_n$ generated by $\\\\{k_i,f_i:1\\\\leq i\\\\leq n\\\\}\\\\cup\\\\{c\\\\}$ (where $c$ denotes the set complement operator) has cardinality no more than $2p(n)$ where $p(n)=\\\\frac{5}{24}n^4+\\\\frac{37}{12}n^3+\\\\frac{79}{24}n^2+\\\\frac{101}{12}n+2$. The bound is sharp in the following sense: for each $n$ there exists a saturated polytopological space $(X,\\\\tau_1,...,\\\\tau_n)$ and a subset $A\\\\subseteq X$ such that repeated application of the operators $k_i, f_i, c$ to $A$ will yield exactly $2p(n)$ distinct sets. In particular, following the tradition for Kuratowski-type problems, we exhibit an explicit initial set in $\\\\mathbb{R}$, equipped with the usual and Sorgenfrey topologies, which yields $2p(2)=120$ distinct sets under the action of the monoid $\\\\mathcal{KF}_2$.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

设$X$为一个空间,该空间配备了$n$拓扑$\tau_1,\ldots,\tau_n$,该拓扑是两两可比较和饱和的,对于每个$1\leq i\leq n$,设$k_i$和$f_i$分别为相关的拓扑闭包和边界算子。在Kuratowski的闭包补定理的启发下,我们证明了$\{k_i,f_i:1\leq i\leq n\}\cup\{c\}$(其中$c$表示集合补算子)生成的集合算子$\mathcal{KF}_n$的monooid的基数不大于$2p(n)$(其中$p(n)=\frac{5}{24}n^4+\frac{37}{12}n^3+\frac{79}{24}n^2+\frac{101}{12}n+2$)。这个界在以下意义上是尖锐的:对于每个$n$,存在一个饱和的拓扑空间$(X,\tau_1,...,\tau_n)$和一个子集$A\subseteq X$,使得对$A$的运算符$k_i, f_i, c$的重复应用将恰好产生$2p(n)$个不同的集合。特别地,遵循kuratowski型问题的传统,我们在$\mathbb{R}$中展示了一个显式初始集,配备了通常和Sorgenfrey拓扑,它在单似群$\mathcal{KF}_2$的作用下产生$2p(2)=120$不同的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
closure-complement-frontier problem in saturated polytopological spaces
Let $X$ be a space equipped with $n$ topologies $\tau_1,\ldots,\tau_n$ which are pairwise comparable and saturated, and for each $1\leq i\leq n$ let $k_i$ and $f_i$ be the associated topological closure and frontier operators, respectively. Inspired by the closure-complement theorem of Kuratowski, we prove that the monoid of set operators $\mathcal{KF}_n$ generated by $\{k_i,f_i:1\leq i\leq n\}\cup\{c\}$ (where $c$ denotes the set complement operator) has cardinality no more than $2p(n)$ where $p(n)=\frac{5}{24}n^4+\frac{37}{12}n^3+\frac{79}{24}n^2+\frac{101}{12}n+2$. The bound is sharp in the following sense: for each $n$ there exists a saturated polytopological space $(X,\tau_1,...,\tau_n)$ and a subset $A\subseteq X$ such that repeated application of the operators $k_i, f_i, c$ to $A$ will yield exactly $2p(n)$ distinct sets. In particular, following the tradition for Kuratowski-type problems, we exhibit an explicit initial set in $\mathbb{R}$, equipped with the usual and Sorgenfrey topologies, which yields $2p(2)=120$ distinct sets under the action of the monoid $\mathcal{KF}_2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信