平纹织物复合材料的多尺度粘弹性分析

Q4 Engineering
M. Šejnoha, J. Vorel, S. Valentová, G. Marseglia
{"title":"平纹织物复合材料的多尺度粘弹性分析","authors":"M. Šejnoha, J. Vorel, S. Valentová, G. Marseglia","doi":"10.2495/cmem-v9-n3-189-200","DOIUrl":null,"url":null,"abstract":"This paper outlines the prediction of a macroscopic viscoelastic response of plain weave textile composites made either from basalt or carbon fiber tows impregnated by polymeric matrix. Owing to a natural orthotropic response at the level of yarns, the calibration of a simple meso-scale constitutive model from virtual laboratory tests is precluded and a fully coupled analysis is needed instead. One option is solving the problem in the framework of FE analysis when both the microand meso-scale problems are solved with the help of the finite element method. This requires formulation of a suitable computational model most often represented by a statistically equivalent periodic unit cell on both scales. However, such an approach may prove computationally expensive particularly at stages of initial design where a large parametric study is often needed to test various material and geometrical configurations. A suitable method of attack then arises from the application of computationally efficient classical micromechanical models such as the Mori-Tanaka (MT) method. This approach is examined in the present study. While the present work is mostly computational, it requires an extensive experimental program to tune the generalized Leonov constitutive model describing the behavior of the matrix phase. Additionally, a series of virtual laboratory tests is carried out at the level of yarns to improve the predictive capability of the MT method.","PeriodicalId":36958,"journal":{"name":"International Journal of Computational Methods and Experimental Measurements","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale viscoelastic analysis of plain weave textile composites\",\"authors\":\"M. Šejnoha, J. Vorel, S. Valentová, G. Marseglia\",\"doi\":\"10.2495/cmem-v9-n3-189-200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines the prediction of a macroscopic viscoelastic response of plain weave textile composites made either from basalt or carbon fiber tows impregnated by polymeric matrix. Owing to a natural orthotropic response at the level of yarns, the calibration of a simple meso-scale constitutive model from virtual laboratory tests is precluded and a fully coupled analysis is needed instead. One option is solving the problem in the framework of FE analysis when both the microand meso-scale problems are solved with the help of the finite element method. This requires formulation of a suitable computational model most often represented by a statistically equivalent periodic unit cell on both scales. However, such an approach may prove computationally expensive particularly at stages of initial design where a large parametric study is often needed to test various material and geometrical configurations. A suitable method of attack then arises from the application of computationally efficient classical micromechanical models such as the Mori-Tanaka (MT) method. This approach is examined in the present study. While the present work is mostly computational, it requires an extensive experimental program to tune the generalized Leonov constitutive model describing the behavior of the matrix phase. Additionally, a series of virtual laboratory tests is carried out at the level of yarns to improve the predictive capability of the MT method.\",\"PeriodicalId\":36958,\"journal\":{\"name\":\"International Journal of Computational Methods and Experimental Measurements\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Methods and Experimental Measurements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/cmem-v9-n3-189-200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods and Experimental Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/cmem-v9-n3-189-200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了玄武岩或碳纤维纤维束经聚合物基体浸渍制成的平纹织物复合材料的宏观粘弹性响应预测。由于纱线水平上的自然正交各向异性响应,排除了从虚拟实验室测试中校准简单的中观尺度本构模型,而需要进行完全耦合分析。一种选择是在有限元分析的框架下解决微观和中观问题,并借助于有限元方法。这需要制定一个合适的计算模型,通常由两个尺度上的统计等效周期单元格表示。然而,这种方法可能在计算上很昂贵,特别是在初始设计阶段,通常需要进行大型参数研究来测试各种材料和几何结构。一种合适的攻击方法是应用计算效率高的经典微力学模型,如Mori-Tanaka (MT)方法。本研究对这种方法进行了检验。虽然目前的工作主要是计算性的,但它需要一个广泛的实验程序来调整描述矩阵相行为的广义列昂诺夫本构模型。此外,在纱线水平上进行了一系列虚拟实验室测试,以提高MT方法的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale viscoelastic analysis of plain weave textile composites
This paper outlines the prediction of a macroscopic viscoelastic response of plain weave textile composites made either from basalt or carbon fiber tows impregnated by polymeric matrix. Owing to a natural orthotropic response at the level of yarns, the calibration of a simple meso-scale constitutive model from virtual laboratory tests is precluded and a fully coupled analysis is needed instead. One option is solving the problem in the framework of FE analysis when both the microand meso-scale problems are solved with the help of the finite element method. This requires formulation of a suitable computational model most often represented by a statistically equivalent periodic unit cell on both scales. However, such an approach may prove computationally expensive particularly at stages of initial design where a large parametric study is often needed to test various material and geometrical configurations. A suitable method of attack then arises from the application of computationally efficient classical micromechanical models such as the Mori-Tanaka (MT) method. This approach is examined in the present study. While the present work is mostly computational, it requires an extensive experimental program to tune the generalized Leonov constitutive model describing the behavior of the matrix phase. Additionally, a series of virtual laboratory tests is carried out at the level of yarns to improve the predictive capability of the MT method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
24
审稿时长
33 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信