利用用户点击自动生成种子集进行实体匹配

Xiao Bai, F. Junqueira, Srinivasan H. Sengamedu
{"title":"利用用户点击自动生成种子集进行实体匹配","authors":"Xiao Bai, F. Junqueira, Srinivasan H. Sengamedu","doi":"10.1145/2487575.2487662","DOIUrl":null,"url":null,"abstract":"Matching entities from different information sources is a very important problem in data analysis and data integration. It is, however, challenging due to the number and diversity of information sources involved, and the significant editorial efforts required to collect sufficient training data. In this paper, we present an approach that leverages user clicks during Web search to automatically generate training data for entity matching. The key insight of our approach is that Web pages clicked for a given query are likely to be about the same entity. We use random walk with restart to reduce data sparseness, rely on co-clustering to group queries and Web pages, and exploit page similarity to improve matching precision. Experimental results show that: (i) With 360K pages from 6 major travel websites, we obtain 84K matchings (of 179K pages) that refer to the same entities, with an average precision of 0.826; (ii) The quality of matching obtained from a classifier trained on the resulted seed data is promising: the performance matches that of editorial data at small size and improves with size.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploiting user clicks for automatic seed set generation for entity matching\",\"authors\":\"Xiao Bai, F. Junqueira, Srinivasan H. Sengamedu\",\"doi\":\"10.1145/2487575.2487662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matching entities from different information sources is a very important problem in data analysis and data integration. It is, however, challenging due to the number and diversity of information sources involved, and the significant editorial efforts required to collect sufficient training data. In this paper, we present an approach that leverages user clicks during Web search to automatically generate training data for entity matching. The key insight of our approach is that Web pages clicked for a given query are likely to be about the same entity. We use random walk with restart to reduce data sparseness, rely on co-clustering to group queries and Web pages, and exploit page similarity to improve matching precision. Experimental results show that: (i) With 360K pages from 6 major travel websites, we obtain 84K matchings (of 179K pages) that refer to the same entities, with an average precision of 0.826; (ii) The quality of matching obtained from a classifier trained on the resulted seed data is promising: the performance matches that of editorial data at small size and improves with size.\",\"PeriodicalId\":20472,\"journal\":{\"name\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487575.2487662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在数据分析和数据集成中,不同信息源的实体匹配是一个非常重要的问题。然而,由于所涉及的信息来源的数量和多样性,以及收集足够的培训数据需要大量的编辑工作,这是具有挑战性的。在本文中,我们提出了一种方法,利用用户在Web搜索期间的点击来自动生成用于实体匹配的训练数据。我们方法的关键观点是,为给定查询单击的Web页面很可能是关于同一实体的。我们使用带重启的随机漫步来降低数据稀疏性,依靠共聚类对查询和网页进行分组,并利用页面相似度来提高匹配精度。实验结果表明:(1)在6个主要旅游网站的360K个页面中,我们获得了84K个指向相同实体的匹配(179K个页面),平均精度为0.826;(ii)从对结果种子数据进行训练的分类器获得的匹配质量是有希望的:性能与小尺寸编辑数据相匹配,并随着尺寸的增加而提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting user clicks for automatic seed set generation for entity matching
Matching entities from different information sources is a very important problem in data analysis and data integration. It is, however, challenging due to the number and diversity of information sources involved, and the significant editorial efforts required to collect sufficient training data. In this paper, we present an approach that leverages user clicks during Web search to automatically generate training data for entity matching. The key insight of our approach is that Web pages clicked for a given query are likely to be about the same entity. We use random walk with restart to reduce data sparseness, rely on co-clustering to group queries and Web pages, and exploit page similarity to improve matching precision. Experimental results show that: (i) With 360K pages from 6 major travel websites, we obtain 84K matchings (of 179K pages) that refer to the same entities, with an average precision of 0.826; (ii) The quality of matching obtained from a classifier trained on the resulted seed data is promising: the performance matches that of editorial data at small size and improves with size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信