S. Gasparin, J. Berger, R. Belarbi, D. Dutykh, N. Mendes
{"title":"用谱降阶方法求解建筑改造中的参数问题","authors":"S. Gasparin, J. Berger, R. Belarbi, D. Dutykh, N. Mendes","doi":"10.1080/19401493.2022.2126527","DOIUrl":null,"url":null,"abstract":"In this paper, the spectral method is developed as a reduced-order model for the solution of parametric problems within the building refurbishment framework. We propose to use the spectral reduced-order method to solve parametric problems in an innovative way, integrating the unknown parameter as one of the coordinates of the decomposition. The residual is minimized combining the Tau–Galerkin method with the Collocation approach. The developed method is evaluated in terms of accuracy and reduction of the computational time in three different cases. The dynamic behaviour of unidimensional moisture diffusion is investigated. The cases focus on solving parametric problems in which the solution depends on space, time, diffusivity and material thickness. Results highlight that the parametric spectral reduced-order method provides accurate solutions and can reduce 10 times the degree of freedom of the solution. It allows efficient computation of the physical phenomena with a lower error when compared to traditional approaches.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"50 1","pages":"211 - 230"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving parametric problems in building renovation with a spectral reduced-order method\",\"authors\":\"S. Gasparin, J. Berger, R. Belarbi, D. Dutykh, N. Mendes\",\"doi\":\"10.1080/19401493.2022.2126527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the spectral method is developed as a reduced-order model for the solution of parametric problems within the building refurbishment framework. We propose to use the spectral reduced-order method to solve parametric problems in an innovative way, integrating the unknown parameter as one of the coordinates of the decomposition. The residual is minimized combining the Tau–Galerkin method with the Collocation approach. The developed method is evaluated in terms of accuracy and reduction of the computational time in three different cases. The dynamic behaviour of unidimensional moisture diffusion is investigated. The cases focus on solving parametric problems in which the solution depends on space, time, diffusivity and material thickness. Results highlight that the parametric spectral reduced-order method provides accurate solutions and can reduce 10 times the degree of freedom of the solution. It allows efficient computation of the physical phenomena with a lower error when compared to traditional approaches.\",\"PeriodicalId\":49168,\"journal\":{\"name\":\"Journal of Building Performance Simulation\",\"volume\":\"50 1\",\"pages\":\"211 - 230\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Building Performance Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/19401493.2022.2126527\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2126527","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Solving parametric problems in building renovation with a spectral reduced-order method
In this paper, the spectral method is developed as a reduced-order model for the solution of parametric problems within the building refurbishment framework. We propose to use the spectral reduced-order method to solve parametric problems in an innovative way, integrating the unknown parameter as one of the coordinates of the decomposition. The residual is minimized combining the Tau–Galerkin method with the Collocation approach. The developed method is evaluated in terms of accuracy and reduction of the computational time in three different cases. The dynamic behaviour of unidimensional moisture diffusion is investigated. The cases focus on solving parametric problems in which the solution depends on space, time, diffusivity and material thickness. Results highlight that the parametric spectral reduced-order method provides accurate solutions and can reduce 10 times the degree of freedom of the solution. It allows efficient computation of the physical phenomena with a lower error when compared to traditional approaches.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.