用谱降阶方法求解建筑改造中的参数问题

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
S. Gasparin, J. Berger, R. Belarbi, D. Dutykh, N. Mendes
{"title":"用谱降阶方法求解建筑改造中的参数问题","authors":"S. Gasparin, J. Berger, R. Belarbi, D. Dutykh, N. Mendes","doi":"10.1080/19401493.2022.2126527","DOIUrl":null,"url":null,"abstract":"In this paper, the spectral method is developed as a reduced-order model for the solution of parametric problems within the building refurbishment framework. We propose to use the spectral reduced-order method to solve parametric problems in an innovative way, integrating the unknown parameter as one of the coordinates of the decomposition. The residual is minimized combining the Tau–Galerkin method with the Collocation approach. The developed method is evaluated in terms of accuracy and reduction of the computational time in three different cases. The dynamic behaviour of unidimensional moisture diffusion is investigated. The cases focus on solving parametric problems in which the solution depends on space, time, diffusivity and material thickness. Results highlight that the parametric spectral reduced-order method provides accurate solutions and can reduce 10 times the degree of freedom of the solution. It allows efficient computation of the physical phenomena with a lower error when compared to traditional approaches.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"50 1","pages":"211 - 230"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving parametric problems in building renovation with a spectral reduced-order method\",\"authors\":\"S. Gasparin, J. Berger, R. Belarbi, D. Dutykh, N. Mendes\",\"doi\":\"10.1080/19401493.2022.2126527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the spectral method is developed as a reduced-order model for the solution of parametric problems within the building refurbishment framework. We propose to use the spectral reduced-order method to solve parametric problems in an innovative way, integrating the unknown parameter as one of the coordinates of the decomposition. The residual is minimized combining the Tau–Galerkin method with the Collocation approach. The developed method is evaluated in terms of accuracy and reduction of the computational time in three different cases. The dynamic behaviour of unidimensional moisture diffusion is investigated. The cases focus on solving parametric problems in which the solution depends on space, time, diffusivity and material thickness. Results highlight that the parametric spectral reduced-order method provides accurate solutions and can reduce 10 times the degree of freedom of the solution. It allows efficient computation of the physical phenomena with a lower error when compared to traditional approaches.\",\"PeriodicalId\":49168,\"journal\":{\"name\":\"Journal of Building Performance Simulation\",\"volume\":\"50 1\",\"pages\":\"211 - 230\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Building Performance Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/19401493.2022.2126527\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2126527","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文将谱法作为一种降阶模型,用于求解建筑翻新框架内的参数问题。我们提出了一种利用谱降阶方法求解参数问题的创新方法,将未知参数作为分解的坐标之一进行积分。将陶伽辽金法与配点法相结合,使残差最小化。在三种不同的情况下,评估了所开发的方法的准确性和减少的计算时间。研究了一维水分扩散的动态特性。案例集中于解决参数问题,其中的解依赖于空间、时间、扩散率和材料厚度。结果表明,参数谱降阶方法提供了精确的解,并可将解的自由度降低10倍。与传统方法相比,它可以有效地计算物理现象,误差更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving parametric problems in building renovation with a spectral reduced-order method
In this paper, the spectral method is developed as a reduced-order model for the solution of parametric problems within the building refurbishment framework. We propose to use the spectral reduced-order method to solve parametric problems in an innovative way, integrating the unknown parameter as one of the coordinates of the decomposition. The residual is minimized combining the Tau–Galerkin method with the Collocation approach. The developed method is evaluated in terms of accuracy and reduction of the computational time in three different cases. The dynamic behaviour of unidimensional moisture diffusion is investigated. The cases focus on solving parametric problems in which the solution depends on space, time, diffusivity and material thickness. Results highlight that the parametric spectral reduced-order method provides accurate solutions and can reduce 10 times the degree of freedom of the solution. It allows efficient computation of the physical phenomena with a lower error when compared to traditional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信