基于FPGA的深度学习预测过程加速器

Qi Yu, Chao Wang, Xiang Ma, Xi Li, Xuehai Zhou
{"title":"基于FPGA的深度学习预测过程加速器","authors":"Qi Yu, Chao Wang, Xiang Ma, Xi Li, Xuehai Zhou","doi":"10.1109/CCGrid.2015.114","DOIUrl":null,"url":null,"abstract":"Recently, machine learning is widely used in applications and cloud services. And as the emerging field of machine learning, deep learning shows excellent ability in solving complex learning problems. To give users better experience, high performance implementations of deep learning applications seem very important. As a common means to accelerate algorithms, FPGA has high performance, low power consumption, small size and other characteristics. So we use FPGA to design a deep learning accelerator, the accelerator focuses on the implementation of the prediction process, data access optimization and pipeline structure. Compared with Core 2 CPU 2.3GHz, our accelerator can achieve promising result.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"1 1","pages":"1159-1162"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"A Deep Learning Prediction Process Accelerator Based FPGA\",\"authors\":\"Qi Yu, Chao Wang, Xiang Ma, Xi Li, Xuehai Zhou\",\"doi\":\"10.1109/CCGrid.2015.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, machine learning is widely used in applications and cloud services. And as the emerging field of machine learning, deep learning shows excellent ability in solving complex learning problems. To give users better experience, high performance implementations of deep learning applications seem very important. As a common means to accelerate algorithms, FPGA has high performance, low power consumption, small size and other characteristics. So we use FPGA to design a deep learning accelerator, the accelerator focuses on the implementation of the prediction process, data access optimization and pipeline structure. Compared with Core 2 CPU 2.3GHz, our accelerator can achieve promising result.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"1 1\",\"pages\":\"1159-1162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

最近,机器学习在应用程序和云服务中得到了广泛的应用。而深度学习作为机器学习的新兴领域,在解决复杂学习问题方面表现出了出色的能力。为了给用户更好的体验,深度学习应用的高性能实现显得非常重要。FPGA作为一种常用的算法加速手段,具有高性能、低功耗、体积小等特点。与Core 2 CPU 2.3GHz相比,我们的加速器可以取得很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Prediction Process Accelerator Based FPGA
Recently, machine learning is widely used in applications and cloud services. And as the emerging field of machine learning, deep learning shows excellent ability in solving complex learning problems. To give users better experience, high performance implementations of deep learning applications seem very important. As a common means to accelerate algorithms, FPGA has high performance, low power consumption, small size and other characteristics. So we use FPGA to design a deep learning accelerator, the accelerator focuses on the implementation of the prediction process, data access optimization and pipeline structure. Compared with Core 2 CPU 2.3GHz, our accelerator can achieve promising result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信