{"title":"毫米波差分驱动圆极化平面孔径天线","authors":"D. Bisharat, S. Liao, Q. Xue","doi":"10.1109/IRMMW-THZ.2015.7327653","DOIUrl":null,"url":null,"abstract":"This paper presents a novel differentially-driven planar aperture antenna for circularly-polarized (CP) radiation. The proposed antenna is simple in structure and is constructed on only a single layer laminate using standard printed-circuit-board (PCB) technology. Circular polarization is realized by rotationally-symmetric windmill-shaped aperture-strip formation with travelling wave distribution. An opening-cavity that is formed by metalized vias is adopted to offer favorable unidirectional radiation and higher gain. Simulation results of a prototype working at V-band show a 3-dB axial ratio (AR) bandwidth of 17.4% (56.8-67.5 GHz), which is within its -10-dB impedance bandwidth. Meanwhile, the left-handed CP (LHCP) gain is stable throughout the operating bandwidth with a peak gain of 14.2 dBi. The proposed antenna is a promising candidate for millimeter-wave (mmWave) bands due to its merits of wideband, high gain, simple structure, low cost, and easy integration with differential circuits.","PeriodicalId":6577,"journal":{"name":"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)","volume":"75 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Differentially-driven circularly-polarized planar aperture antenna for millimeter-wave application\",\"authors\":\"D. Bisharat, S. Liao, Q. Xue\",\"doi\":\"10.1109/IRMMW-THZ.2015.7327653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel differentially-driven planar aperture antenna for circularly-polarized (CP) radiation. The proposed antenna is simple in structure and is constructed on only a single layer laminate using standard printed-circuit-board (PCB) technology. Circular polarization is realized by rotationally-symmetric windmill-shaped aperture-strip formation with travelling wave distribution. An opening-cavity that is formed by metalized vias is adopted to offer favorable unidirectional radiation and higher gain. Simulation results of a prototype working at V-band show a 3-dB axial ratio (AR) bandwidth of 17.4% (56.8-67.5 GHz), which is within its -10-dB impedance bandwidth. Meanwhile, the left-handed CP (LHCP) gain is stable throughout the operating bandwidth with a peak gain of 14.2 dBi. The proposed antenna is a promising candidate for millimeter-wave (mmWave) bands due to its merits of wideband, high gain, simple structure, low cost, and easy integration with differential circuits.\",\"PeriodicalId\":6577,\"journal\":{\"name\":\"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)\",\"volume\":\"75 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THZ.2015.7327653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2015.7327653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differentially-driven circularly-polarized planar aperture antenna for millimeter-wave application
This paper presents a novel differentially-driven planar aperture antenna for circularly-polarized (CP) radiation. The proposed antenna is simple in structure and is constructed on only a single layer laminate using standard printed-circuit-board (PCB) technology. Circular polarization is realized by rotationally-symmetric windmill-shaped aperture-strip formation with travelling wave distribution. An opening-cavity that is formed by metalized vias is adopted to offer favorable unidirectional radiation and higher gain. Simulation results of a prototype working at V-band show a 3-dB axial ratio (AR) bandwidth of 17.4% (56.8-67.5 GHz), which is within its -10-dB impedance bandwidth. Meanwhile, the left-handed CP (LHCP) gain is stable throughout the operating bandwidth with a peak gain of 14.2 dBi. The proposed antenna is a promising candidate for millimeter-wave (mmWave) bands due to its merits of wideband, high gain, simple structure, low cost, and easy integration with differential circuits.