具有尖锐特征的保持连通性的光滑表面填充

Thibault Lescoat, Pooran Memari, Jean-Marc Thiery, M. Ovsjanikov, T. Boubekeur
{"title":"具有尖锐特征的保持连通性的光滑表面填充","authors":"Thibault Lescoat, Pooran Memari, Jean-Marc Thiery, M. Ovsjanikov, T. Boubekeur","doi":"10.2312/pg.20191332","DOIUrl":null,"url":null,"abstract":"We present a method for constructing a surface mesh filling gaps between the boundaries of multiple disconnected input components. Unlike previous works, our method pays special attention to preserving both the connectivity and large-scale geometric features of input parts, while maintaining efficiency and scalability w.r.t. mesh complexity. Starting from an implicit surface reconstruction matching the parts’ boundaries, we first introduce a modified dual contouring algorithm which stitches a meshed contour to the input components while preserving their connectivity. We then show how to deform the reconstructed mesh to respect the boundary geometry and preserve sharp feature lines, smoothly blending them when necessary. As a result, our reconstructed surface is smooth and propagates the feature lines of the input. We demonstrate on a wide variety of input shapes that our method is scalable to large input complexity and results in superior mesh quality compared to existing techniques. CCS Concepts • Computing methodologies → Shape modeling; Mesh models; Mesh geometry models;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"9 1","pages":"7-13"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connectivity-preserving Smooth Surface Filling with Sharp Features\",\"authors\":\"Thibault Lescoat, Pooran Memari, Jean-Marc Thiery, M. Ovsjanikov, T. Boubekeur\",\"doi\":\"10.2312/pg.20191332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for constructing a surface mesh filling gaps between the boundaries of multiple disconnected input components. Unlike previous works, our method pays special attention to preserving both the connectivity and large-scale geometric features of input parts, while maintaining efficiency and scalability w.r.t. mesh complexity. Starting from an implicit surface reconstruction matching the parts’ boundaries, we first introduce a modified dual contouring algorithm which stitches a meshed contour to the input components while preserving their connectivity. We then show how to deform the reconstructed mesh to respect the boundary geometry and preserve sharp feature lines, smoothly blending them when necessary. As a result, our reconstructed surface is smooth and propagates the feature lines of the input. We demonstrate on a wide variety of input shapes that our method is scalable to large input complexity and results in superior mesh quality compared to existing techniques. CCS Concepts • Computing methodologies → Shape modeling; Mesh models; Mesh geometry models;\",\"PeriodicalId\":88304,\"journal\":{\"name\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"volume\":\"9 1\",\"pages\":\"7-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/pg.20191332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20191332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种构造表面网格填充多个不连接输入组件边界之间空隙的方法。与以往的工作不同,我们的方法特别注意保持输入部件的连通性和大规模几何特征,同时保持效率和可扩展性。从匹配零件边界的隐式表面重构开始,我们首先引入了一种改进的双轮廓算法,该算法将网格轮廓缝合到输入组件上,同时保持它们的连通性。然后,我们展示了如何变形重建的网格,以尊重边界几何形状并保留尖锐的特征线,必要时平滑地混合它们。因此,我们重建的表面是光滑的,并且传播了输入的特征线。我们展示了各种各样的输入形状,我们的方法是可扩展到大的输入复杂性和结果优越的网格质量相比,现有的技术。CCS概念•计算方法→形状建模;网格模型;网格几何模型;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectivity-preserving Smooth Surface Filling with Sharp Features
We present a method for constructing a surface mesh filling gaps between the boundaries of multiple disconnected input components. Unlike previous works, our method pays special attention to preserving both the connectivity and large-scale geometric features of input parts, while maintaining efficiency and scalability w.r.t. mesh complexity. Starting from an implicit surface reconstruction matching the parts’ boundaries, we first introduce a modified dual contouring algorithm which stitches a meshed contour to the input components while preserving their connectivity. We then show how to deform the reconstructed mesh to respect the boundary geometry and preserve sharp feature lines, smoothly blending them when necessary. As a result, our reconstructed surface is smooth and propagates the feature lines of the input. We demonstrate on a wide variety of input shapes that our method is scalable to large input complexity and results in superior mesh quality compared to existing techniques. CCS Concepts • Computing methodologies → Shape modeling; Mesh models; Mesh geometry models;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信