MEC框架下计算与传输资源调度与分配机制研究

Qingwen Han, Xiaoyuan Zhang, Junjun Zhang, Lingqiu Zeng, L. Ye, Jianmei Lei, Yang Jiang, Xuena Peng
{"title":"MEC框架下计算与传输资源调度与分配机制研究","authors":"Qingwen Han, Xiaoyuan Zhang, Junjun Zhang, Lingqiu Zeng, L. Ye, Jianmei Lei, Yang Jiang, Xuena Peng","doi":"10.1109/ITSC.2019.8916981","DOIUrl":null,"url":null,"abstract":"With the concept of MEC (Multi-access Edge Computing) being put forward, RSU (Roadside Unit) is considered as a valid application provider, which not only executes transmission resource allocation and data processing related computing but also provides real-time applications to road vehicles. However, when fixed roadside nodes communicate with mobile vehicles, the high service migration rate could influence real-time feature of corresponding service. Moreover, vehicle density also affects service performance. Hence, in this paper, a new concept, MSCN (Mobile Secondary Computing Node), is defined, while a MSCN oriented infrastructure and MSCN selection mechanism are proposed. Then corresponding vehicle message dissemination mechanism is designed. A network simulator (NS-3.28) is employed to investigate the performance of the proposed architecture. The simulation results show that the proposed architecture significantly improves both communication performance and computing efficiency.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"26 2 1","pages":"437-442"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Research on resource scheduling and allocation mechanism of computation and transmission under MEC framework\",\"authors\":\"Qingwen Han, Xiaoyuan Zhang, Junjun Zhang, Lingqiu Zeng, L. Ye, Jianmei Lei, Yang Jiang, Xuena Peng\",\"doi\":\"10.1109/ITSC.2019.8916981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the concept of MEC (Multi-access Edge Computing) being put forward, RSU (Roadside Unit) is considered as a valid application provider, which not only executes transmission resource allocation and data processing related computing but also provides real-time applications to road vehicles. However, when fixed roadside nodes communicate with mobile vehicles, the high service migration rate could influence real-time feature of corresponding service. Moreover, vehicle density also affects service performance. Hence, in this paper, a new concept, MSCN (Mobile Secondary Computing Node), is defined, while a MSCN oriented infrastructure and MSCN selection mechanism are proposed. Then corresponding vehicle message dissemination mechanism is designed. A network simulator (NS-3.28) is employed to investigate the performance of the proposed architecture. The simulation results show that the proposed architecture significantly improves both communication performance and computing efficiency.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"26 2 1\",\"pages\":\"437-442\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8916981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8916981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着MEC (Multi-access Edge Computing)概念的提出,RSU(路边单元)被认为是一个有效的应用提供商,它不仅执行传输资源分配和数据处理相关的计算,而且为道路车辆提供实时应用。然而,当路边固定节点与移动车辆通信时,较高的业务迁移率会影响相应服务的实时性。此外,车辆密度也会影响服务性能。为此,本文定义了移动辅助计算节点(MSCN, Mobile Secondary Computing Node)的概念,并提出了面向MSCN的基础架构和MSCN选择机制。然后设计了相应的车载信息发布机制。采用网络模拟器(NS-3.28)对所提架构的性能进行了研究。仿真结果表明,该结构显著提高了通信性能和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on resource scheduling and allocation mechanism of computation and transmission under MEC framework
With the concept of MEC (Multi-access Edge Computing) being put forward, RSU (Roadside Unit) is considered as a valid application provider, which not only executes transmission resource allocation and data processing related computing but also provides real-time applications to road vehicles. However, when fixed roadside nodes communicate with mobile vehicles, the high service migration rate could influence real-time feature of corresponding service. Moreover, vehicle density also affects service performance. Hence, in this paper, a new concept, MSCN (Mobile Secondary Computing Node), is defined, while a MSCN oriented infrastructure and MSCN selection mechanism are proposed. Then corresponding vehicle message dissemination mechanism is designed. A network simulator (NS-3.28) is employed to investigate the performance of the proposed architecture. The simulation results show that the proposed architecture significantly improves both communication performance and computing efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信