非均匀迁移的均匀分支过程

Q3 Mathematics
I. Rahimov
{"title":"非均匀迁移的均匀分支过程","authors":"I. Rahimov","doi":"10.1515/eqc-2021-0033","DOIUrl":null,"url":null,"abstract":"Abstract The stationary immigration has a limited effect over the asymptotic behavior of the underlying branching process. It affects mostly the limiting distribution and the life-period of the process. In contrast, if the immigration rate changes over time, then the asymptotic behavior of the process is significantly different and a variety of new phenomena are observed. In this review we discuss branching processes with time non-homogeneous immigration. Our goal is to help researchers interested in the topic to familiarize themselves with the current state of research.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"43 1","pages":"165 - 183"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Homogeneous Branching Processes with Non-Homogeneous Immigration\",\"authors\":\"I. Rahimov\",\"doi\":\"10.1515/eqc-2021-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The stationary immigration has a limited effect over the asymptotic behavior of the underlying branching process. It affects mostly the limiting distribution and the life-period of the process. In contrast, if the immigration rate changes over time, then the asymptotic behavior of the process is significantly different and a variety of new phenomena are observed. In this review we discuss branching processes with time non-homogeneous immigration. Our goal is to help researchers interested in the topic to familiarize themselves with the current state of research.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"43 1\",\"pages\":\"165 - 183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2021-0033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2021-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

平稳迁移对潜在分支过程的渐近行为影响有限。它主要影响过程的极限分布和生命周期。相反,如果移民率随时间变化,则该过程的渐近行为显着不同,并观察到各种新现象。本文讨论了具有时间非均匀迁移的分支过程。我们的目标是帮助对该主题感兴趣的研究人员熟悉研究的现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneous Branching Processes with Non-Homogeneous Immigration
Abstract The stationary immigration has a limited effect over the asymptotic behavior of the underlying branching process. It affects mostly the limiting distribution and the life-period of the process. In contrast, if the immigration rate changes over time, then the asymptotic behavior of the process is significantly different and a variety of new phenomena are observed. In this review we discuss branching processes with time non-homogeneous immigration. Our goal is to help researchers interested in the topic to familiarize themselves with the current state of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信