{"title":"预算矩阵独立集的EPTAS","authors":"Ilan Doron Arad, A. Kulik, H. Shachnai","doi":"10.48550/arXiv.2209.04654","DOIUrl":null,"url":null,"abstract":"We consider the budgeted matroid independent set problem. The input is a ground set, where each element has a cost and a non-negative profit, along with a matroid over the elements and a budget. The goal is to select a subset of elements which maximizes the total profit subject to the matroid and budget constraints. Several well known special cases, where we have, e.g., a uniform matroid and a budget, or no matroid constraint (i.e., the classic knapsack problem), admit a fully polynomial-time approximation scheme (FPTAS). In contrast, already a slight generalization to the multi-budgeted matroid independent set problem has a PTAS but does not admit an efficient polynomial-time approximation scheme (EPTAS). This implies a PTAS for our problem, which is the best known result prior to this work. Our main contribution is an EPTAS for the budgeted matroid independent set problem. A key idea of the scheme is to find a representative set for the instance, whose cardinality depends solely on $1/\\varepsilon$, where $\\varepsilon>0$ is the accuracy parameter of the scheme. The representative set is identified via matroid basis minimization, which can be solved by a simple greedy algorithm. Our scheme enumerates over subsets of the representative set and extends each subset using a linear program. The notion of representative sets may be useful in solving other variants of the budgeted matroid independent set problem.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"9 1","pages":"69-83"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An EPTAS for Budgeted Matroid Independent Set\",\"authors\":\"Ilan Doron Arad, A. Kulik, H. Shachnai\",\"doi\":\"10.48550/arXiv.2209.04654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the budgeted matroid independent set problem. The input is a ground set, where each element has a cost and a non-negative profit, along with a matroid over the elements and a budget. The goal is to select a subset of elements which maximizes the total profit subject to the matroid and budget constraints. Several well known special cases, where we have, e.g., a uniform matroid and a budget, or no matroid constraint (i.e., the classic knapsack problem), admit a fully polynomial-time approximation scheme (FPTAS). In contrast, already a slight generalization to the multi-budgeted matroid independent set problem has a PTAS but does not admit an efficient polynomial-time approximation scheme (EPTAS). This implies a PTAS for our problem, which is the best known result prior to this work. Our main contribution is an EPTAS for the budgeted matroid independent set problem. A key idea of the scheme is to find a representative set for the instance, whose cardinality depends solely on $1/\\\\varepsilon$, where $\\\\varepsilon>0$ is the accuracy parameter of the scheme. The representative set is identified via matroid basis minimization, which can be solved by a simple greedy algorithm. Our scheme enumerates over subsets of the representative set and extends each subset using a linear program. The notion of representative sets may be useful in solving other variants of the budgeted matroid independent set problem.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"9 1\",\"pages\":\"69-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.04654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.04654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the budgeted matroid independent set problem. The input is a ground set, where each element has a cost and a non-negative profit, along with a matroid over the elements and a budget. The goal is to select a subset of elements which maximizes the total profit subject to the matroid and budget constraints. Several well known special cases, where we have, e.g., a uniform matroid and a budget, or no matroid constraint (i.e., the classic knapsack problem), admit a fully polynomial-time approximation scheme (FPTAS). In contrast, already a slight generalization to the multi-budgeted matroid independent set problem has a PTAS but does not admit an efficient polynomial-time approximation scheme (EPTAS). This implies a PTAS for our problem, which is the best known result prior to this work. Our main contribution is an EPTAS for the budgeted matroid independent set problem. A key idea of the scheme is to find a representative set for the instance, whose cardinality depends solely on $1/\varepsilon$, where $\varepsilon>0$ is the accuracy parameter of the scheme. The representative set is identified via matroid basis minimization, which can be solved by a simple greedy algorithm. Our scheme enumerates over subsets of the representative set and extends each subset using a linear program. The notion of representative sets may be useful in solving other variants of the budgeted matroid independent set problem.