量子信息理论中的矩映射和伽罗瓦轨道

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Kael Dixon, S. Salamon
{"title":"量子信息理论中的矩映射和伽罗瓦轨道","authors":"Kael Dixon, S. Salamon","doi":"10.1137/19m1305574","DOIUrl":null,"url":null,"abstract":"SIC-POVMs are configurations of points or rank-one projections arising from the action of a finite Heisenberg group on $\\mathbb C^d$. The resulting equations are interpreted in terms of moment maps by focussing attention on the orbit of a cyclic subgroup and the maximal torus in $\\mathrm U(d)$ that contains it. The image of a SIC-POVM under the associated moment map lies in an intersection of real quadrics, which we describe explicitly. We also elaborate the conjectural description of the related number fields and describe the structure of Galois orbits of overlap phases.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Moment Maps and Galois Orbits in Quantum Information Theory\",\"authors\":\"Kael Dixon, S. Salamon\",\"doi\":\"10.1137/19m1305574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIC-POVMs are configurations of points or rank-one projections arising from the action of a finite Heisenberg group on $\\\\mathbb C^d$. The resulting equations are interpreted in terms of moment maps by focussing attention on the orbit of a cyclic subgroup and the maximal torus in $\\\\mathrm U(d)$ that contains it. The image of a SIC-POVM under the associated moment map lies in an intersection of real quadrics, which we describe explicitly. We also elaborate the conjectural description of the related number fields and describe the structure of Galois orbits of overlap phases.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/19m1305574\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19m1305574","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

sic - povm是由有限Heisenberg群作用于$\mathbb C^d$而产生的点或秩一投影的构型。通过将注意力集中在循环子群的轨道和包含它的$\ maththrm U(d)$中的最大环面上,用矩映射来解释所得到的方程。在相关矩映射下,SIC-POVM的像位于实二次曲线的交点上,我们对其进行了明确的描述。我们还对相关数场进行了推测描述,并描述了重叠相伽罗瓦轨道的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment Maps and Galois Orbits in Quantum Information Theory
SIC-POVMs are configurations of points or rank-one projections arising from the action of a finite Heisenberg group on $\mathbb C^d$. The resulting equations are interpreted in terms of moment maps by focussing attention on the orbit of a cyclic subgroup and the maximal torus in $\mathrm U(d)$ that contains it. The image of a SIC-POVM under the associated moment map lies in an intersection of real quadrics, which we describe explicitly. We also elaborate the conjectural description of the related number fields and describe the structure of Galois orbits of overlap phases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信