具有能量和熵的振动结构的统计能量分析

Elise M. Hough, Z. Sotoudeh
{"title":"具有能量和熵的振动结构的统计能量分析","authors":"Elise M. Hough, Z. Sotoudeh","doi":"10.1115/imece2021-69640","DOIUrl":null,"url":null,"abstract":"\n We present a complete thermodynamic analogy of statistical energy analysis (SEA) using entropy and energy for both linear and nonlinear coupled systems. We will use Khinchin’s Entropy as our statistical entropy definition from statistical mechanics. This framework allows for the restrictive assumptions of linearity to be removed from this analysis method. We will use the classical definition of entropy to relate entropy to Vibrational Temperature. Using Khinchin’s statistical definition of entropy for a vibrating system, we will define a Vibrational Temperature as a function of energy. Hence, we will derive all that is necessary to construct the SEA power flow equation along with the transient coupling loss factors without any linearity assumption. With this method one can expand SEA to nonlinear transient coupled systems. We will verify our proposed method using Monte Carlo Simulation and published analytical closed form solutions.","PeriodicalId":23648,"journal":{"name":"Volume 1: Acoustics, Vibration, and Phononics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Energy Analysis of Vibrating Structures With Energy and Entropy\",\"authors\":\"Elise M. Hough, Z. Sotoudeh\",\"doi\":\"10.1115/imece2021-69640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a complete thermodynamic analogy of statistical energy analysis (SEA) using entropy and energy for both linear and nonlinear coupled systems. We will use Khinchin’s Entropy as our statistical entropy definition from statistical mechanics. This framework allows for the restrictive assumptions of linearity to be removed from this analysis method. We will use the classical definition of entropy to relate entropy to Vibrational Temperature. Using Khinchin’s statistical definition of entropy for a vibrating system, we will define a Vibrational Temperature as a function of energy. Hence, we will derive all that is necessary to construct the SEA power flow equation along with the transient coupling loss factors without any linearity assumption. With this method one can expand SEA to nonlinear transient coupled systems. We will verify our proposed method using Monte Carlo Simulation and published analytical closed form solutions.\",\"PeriodicalId\":23648,\"journal\":{\"name\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-69640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-69640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于线性和非线性耦合系统,我们用熵和能量对统计能量分析(SEA)进行了一个完整的热力学类比。我们将使用Khinchin的熵作为统计力学中的统计熵定义。该框架允许从该分析方法中去除线性的限制性假设。我们将使用熵的经典定义来把熵和振动温度联系起来。利用Khinchin对振动系统熵的统计定义,我们将振动温度定义为能量的函数。因此,我们将推导出在没有任何线性假设的情况下,建立SEA功率流方程和瞬态耦合损失因子所必需的一切。用这种方法可以将SEA推广到非线性瞬态耦合系统。我们将使用蒙特卡罗模拟和已发表的解析封闭形式解来验证我们提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Energy Analysis of Vibrating Structures With Energy and Entropy
We present a complete thermodynamic analogy of statistical energy analysis (SEA) using entropy and energy for both linear and nonlinear coupled systems. We will use Khinchin’s Entropy as our statistical entropy definition from statistical mechanics. This framework allows for the restrictive assumptions of linearity to be removed from this analysis method. We will use the classical definition of entropy to relate entropy to Vibrational Temperature. Using Khinchin’s statistical definition of entropy for a vibrating system, we will define a Vibrational Temperature as a function of energy. Hence, we will derive all that is necessary to construct the SEA power flow equation along with the transient coupling loss factors without any linearity assumption. With this method one can expand SEA to nonlinear transient coupled systems. We will verify our proposed method using Monte Carlo Simulation and published analytical closed form solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信