与基本三角函数相关的单参数族的奇异值和实不动点\\[4pt] $\sin z$, $\cos z$和 $\tan z$

Mohammad Sajid
{"title":"与基本三角函数相关的单参数族的奇异值和实不动点\\\\[4pt] $\\sin z$, $\\cos z$和 $\\tan z$","authors":"Mohammad Sajid","doi":"10.12732/ijam.v33i4.8","DOIUrl":null,"url":null,"abstract":"This article is devoted to investigate the singular values as well as the real fixed points of one-parameter families of transcendental meromorphic functions which are associated with fundamental trigonometric functions sin z, cos z and tan z. For this purpose, we consider the functions fμ(z) = sin z z+μ , gη(z) = cos z z+η and hκ(z) = tan z z2 + κ for μ > 0, η > 0 and κ > 0 respectively, and z ∈ C. It is found that the functions fμ(z) and gη(z) have infinite number of bounded singular values while the function hκ(z) has infinite number of unbounded singular values. Moreover, the real fixed points of fμ(z), gη(z) and hκ(z) are described. AMS Subject Classification: 30D05; 37C25; 58K05","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"8 1","pages":"635"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SINGULAR VALUES AND REAL FIXED POINTS OF ONE-PARAMETER FAMILIES ASSOCIATED WITH FUNDAMENTAL TRIGONOMETRIC FUNCTIONS\\\\\\\\[4pt] $\\\\sin z$, $\\\\cos z$ and $\\\\tan z$\",\"authors\":\"Mohammad Sajid\",\"doi\":\"10.12732/ijam.v33i4.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is devoted to investigate the singular values as well as the real fixed points of one-parameter families of transcendental meromorphic functions which are associated with fundamental trigonometric functions sin z, cos z and tan z. For this purpose, we consider the functions fμ(z) = sin z z+μ , gη(z) = cos z z+η and hκ(z) = tan z z2 + κ for μ > 0, η > 0 and κ > 0 respectively, and z ∈ C. It is found that the functions fμ(z) and gη(z) have infinite number of bounded singular values while the function hκ(z) has infinite number of unbounded singular values. Moreover, the real fixed points of fμ(z), gη(z) and hκ(z) are described. AMS Subject Classification: 30D05; 37C25; 58K05\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"8 1\",\"pages\":\"635\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/ijam.v33i4.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/ijam.v33i4.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了与基本三角函数sinz、cos z和tanz有关的超越亚纯函数单参数族的奇异值和实不动点。为此,我们分别考虑了μ > 0、η > 0和κ > 0时的函数fμ(z) = sin z z+μ、gη(z) = cos z z+η和hκ(z) = tan z z2 + κ。发现函数fμ(z)和gη(z)有无限个有界奇异值,函数hκ(z)有无限个无界奇异值。并给出了fμ(z)、gη(z)和hκ(z)的实不动点。AMS学科分类:30D05;这件37;58 k05
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SINGULAR VALUES AND REAL FIXED POINTS OF ONE-PARAMETER FAMILIES ASSOCIATED WITH FUNDAMENTAL TRIGONOMETRIC FUNCTIONS\\[4pt] $\sin z$, $\cos z$ and $\tan z$
This article is devoted to investigate the singular values as well as the real fixed points of one-parameter families of transcendental meromorphic functions which are associated with fundamental trigonometric functions sin z, cos z and tan z. For this purpose, we consider the functions fμ(z) = sin z z+μ , gη(z) = cos z z+η and hκ(z) = tan z z2 + κ for μ > 0, η > 0 and κ > 0 respectively, and z ∈ C. It is found that the functions fμ(z) and gη(z) have infinite number of bounded singular values while the function hκ(z) has infinite number of unbounded singular values. Moreover, the real fixed points of fμ(z), gη(z) and hκ(z) are described. AMS Subject Classification: 30D05; 37C25; 58K05
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信